Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_2_a9, author = {J. P. Meijaard and Jim M. Papadopoulos and Andy Ruina and A. L. Schwab}, title = {Linearized dynamics equations for the balance and steer of a bicycle: a~benchmark and review}, journal = {Russian journal of nonlinear dynamics}, pages = {343--376}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a9/} }
TY - JOUR AU - J. P. Meijaard AU - Jim M. Papadopoulos AU - Andy Ruina AU - A. L. Schwab TI - Linearized dynamics equations for the balance and steer of a bicycle: a~benchmark and review JO - Russian journal of nonlinear dynamics PY - 2013 SP - 343 EP - 376 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a9/ LA - ru ID - ND_2013_9_2_a9 ER -
%0 Journal Article %A J. P. Meijaard %A Jim M. Papadopoulos %A Andy Ruina %A A. L. Schwab %T Linearized dynamics equations for the balance and steer of a bicycle: a~benchmark and review %J Russian journal of nonlinear dynamics %D 2013 %P 343-376 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a9/ %G ru %F ND_2013_9_2_a9
J. P. Meijaard; Jim M. Papadopoulos; Andy Ruina; A. L. Schwab. Linearized dynamics equations for the balance and steer of a bicycle: a~benchmark and review. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 343-376. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a9/
[1] Appel P., Teoreticheskaya mekhanika, v. 2, Fizmatgiz, M., 1960, 487 pp.; Appell P., Traité de mécanique rationnelle, v. 2, Dynamique du point, Gauthier, Paris, 1896, 538 pp. | Zbl
[2] Dikarev E. D., Dikareva S. B., Fufaev N. A., “Vliyanie naklona rulevoi osi i vynosa perednego kolesa na ustoichivost dvizheniya velosipeda”, MTT, 1981, no. 1, 69–73 | MR
[3] Dzhouns D., Pochemu ustoichiv velosiped?, Kvant, 1970, no. 12, 24–30
[4] Lobas L. G., “Ob upravlyaemom i programmnom dvizheniyakh bitsikla po ploskosti”, MTT, 1978, no. 6, 22–28
[5] Loitsyanskii L. G., Lure A. I., Teoreticheskaya mekhanika, V 3 tt., GTTI, M.–L., 1932–1934, 307 pp.; 452 с. ; 624 с. | Zbl
[6] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Fizmatlit, M., 1967, 520 pp.
[7] Åström K. J., Klein R. E., Lennartsson A., “Bicycle dynamics and control, adapted bicycles for education and research”, IEEE Control Syst. Mag., 25:4 (2005), 26–47 | DOI | MR
[8] Basu-Mandal P., Chatterjee A., Papadopoulos J. M., “Hands-free circular motions of a benchmark bicycle”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2084 (2007), 1983–2003 | DOI | MR | Zbl
[9] Besseling J. F., “The complete analogy between the matrix equations and the continuous field equations of structural analysis”, Proc. of the Internat. Symp. on Analogue and Digital Techniques Applied to Aeronautics, Presses Académiques Européennes, Bruxelles, 1964, 223–242
[10] Bouasse H., Cours de mécanique rationnelle et expérimentale, v. 2, Delagrave, Paris, 1910, 620–625
[11] Bourlet C., “Étude théorique sur la bicyclette. 1; 2”, Bull. Soc. Math. France, 27 (1899), 47–67 ; 76–96 | MR | Zbl | MR
[12] Boussinesq J., “Aperçu sur la théorie de la bicyclette”, J. Math. Pure Appl., 5 (1899), 117–135 | Zbl
[13] Boussinesq J., “Complément à une étude récente concernant la théorie de la bicyclette: influence, sur l'équilibre, des mouvements latéraux spontanés du cavalier”, J. Math. Pure Appl., 5 (1899), 217–232 | Zbl
[14] Bower G. S., “Steering and stability of single-track vehicles”, Automob. Eng., 5 (1915), 280–283
[15] Carvallo E., Théorie du mouvement du monocycle et de la bicyclette, Gauthier-Villars, Paris, 1899
[16] Collins R. N., A mathematical analysis of the stability of two wheeled vehicles, PhD thesis, Department of Mechanical Engineering, University of Wisconsin, Madison, 1963
[17] Cox A. J., “Angular momentum and motorcycle counter-steering: A discussion and demonstration”, Amer. J. Phys., 66:11 (1998), 1018–1020 | DOI
[18] Den Hartog J. P., Mechanics, McGraw-Hill, New York, 1948, 462 pp. | Zbl
[19] Döhring E., Über die Stabilität und die Lenkkräfte von Einspurfahrzeugen, PhD thesis, University of Technology, Braunschweig, 1953
[20] Döhring E., “Die Stabilität von Einspurfahrzeugen”, Forschung auf dem Gebiete des Ingenieurwesens, 21:2 (1955), 50–62 | DOI
[21] Eaton D. J., Man-machine dynamics in the stabilization of single-track vehicles, PhD thesis, University of Michigan, Ann Arbor, 1973
[22] Fajans J., “Steering in bicycles and motorcycles”, Amer. J. Phys., 68:7 (2000), 654–659 | DOI
[23] Franke G., Suhr W., Rie F., “An advanced model of bicycle dynamics”, European J. Phys., 11:2 (1990), 116–121 | DOI | MR
[24] Ge Z.-M., Kinematical and dynamic studies of a bicycle, Shanghai Chiao Tung Univ., Beijing, 1966
[25] Getz N. H., Marsden J. E., “Control for an autonomous bicycle”, IEEE Conf. on Robotics and Automation (Nagoya, Japan, 21–27 May 1995), 6 pp.
[26] Haag J., Les mouvements vibratoire, v. 2, PUF, Paris, 1955, 253 pp. ; Haag J., Oscillatory motions, In 2 Vols., Wadsworth, Belmont, CA, 1962, 201 pp. | MR | MR | Zbl
[27] Hand R. S., Comparisons and stability analysis of linearized equations of motion for a basic bicycle model, MSc thesis, Cornell University, Ithaca, NY, 1988
[28] Herfkens B. D., De stabiliteit van het rijwiel, Report S-98-247-50-10-'49, Instituut voor rijwielontwikkeling, 's-Gravenhage, 1949
[29] Herlihy D. V., Bicycle: The history, Yale Univ. Press, New Haven, CT, 2004, 480 pp.
[30] Higbie J., “The motorcycle as a gyroscope”, Amer. J. Phys., 42:8 (1974), 701–702 | DOI
[31] Hubbard M., “Lateral dynamics and stability of the skateboard”, Trans. ASME J. Appl. Mech., 46, 931–936 | DOI
[32] Jones A. T., “Physics and bicycles”, Amer. J. Phys., 10 (1942), 332–333 | DOI | MR
[33] Jonker J. B., A finite element dynamic analysis of flexible spatial mechanisms and manipulators, PhD thesis, Delft University of Technology, Delft, 1988
[34] Jonker J. B., Meijaard J. P., “SPACAR — computer program for dynamic analysis of flexible spatial mechanisms and manipulators”, Multibody systems handbook, ed. W. Schiehlen, Springer, Berlin, 1990, 123–143 | DOI
[35] Kane T. R., Dynamics, Holt, Rinehart and Winston, New York, 1968, 310 pp. | Zbl
[36] Kirshner D., “Some nonexplanations of bicycle stability”, Amer. J. Phys., 48:1 (1980), 36–38 | DOI
[37] Klein F., Sommerfeld A., Über die Theorie des Kreisels: Die technischen Anwendungen der Kreiseltheorie, Teubner, Leipzig, 1910, 863–884
[38] Koenen C., The dynamic behaviour of a motorcycle when running straight ahead and when cornering, PhD thesis, Delft University of Technology, Delft, 1983
[39] Kondo M., Nagaoka A., Yoshimura F., “Theoretical study on the running stability of the two-wheelers”, Trans. Soc. Automot. Eng. Jpn., 17 (1963), 8–18
[40] Kooijman J. D. G., Schwab A. L., Meijaard J. P., “Experimental validation of a model of an uncontrolled bicycle”, Multibody Syst. Dyn., 19 (2008), 115–132 | DOI | Zbl
[41] Lallement P., Improvement in velocipedes, U. S. Patent 59915, 1866
[42] Le Henaff Y., “Dynamical stability of the bicycle”, European J. Phys., 8:3 (1987), 207–210 | DOI
[43] Lennartsson A., Efficient multibody dynamics, PhD thesis, Royal Institute of Technology, Stockholm, 1999
[44] Limebeer D. J. N., Sharp R. S., “Bicycles, motorcycles, and models”, IEEE Control Syst. Mag., 26:5 (2006), 34–61 | DOI
[45] Lowell J., McKell H. D., “The stability of bicycles”, Amer. J. Phys., 50:12 (1982), 1106–1112 | DOI | MR
[46] Manning J. R., The dynamical stability of bicycles, Report RN/1605/JRM, Department of Scientific and Industrial Research, Road Research Laboratory, Crowthorne, Berkshire, UK, 1951
[47] Maunsell F. G., Why does a bicycle keep upright?, Math. Gaz., 30 (1946), 195–199 | DOI
[48] Mears B. C., Open loop aspects of two wheeled vehicle stability characteristics, PhD thesis, University of Illinois at Urbana–Champaign, 1988
[49] Meijaard J. P., “Direct determination of periodic solutions of the dynamical equations of flexible mechanisms and manipulators”, Int. J. Numer. Methods Eng., 32:8 (1991), 1691–1710 | DOI | Zbl
[50] Meijaard J. P., Derivation of the linearized equations for an uncontrolled bicycle, Internal report, University of Nottingham, UK, 2004
[51] Olsen J., Papadopoulos J. M., “Bicycle dynamics: The meaning behind the math”, Bike Tech., 7:6 (1988), 13–15
[52] Papadopoulos J. M., Bicycle steering dynamics and self-stability: A summary report on work in progress, Technical report. Cornell Bicycle Research Project, Cornell University, Ithaca, NY, 1987
[53] Patterson B., The chronicles of the lords of the chainring, Patterson, Santa Maria, CA, 1998, 131 pp.
[54] Pearsall R. H., “The stability of a bicycle”, Proc. Inst. Automob. Eng., 17 (1922), 395–404
[55] Psiaki M. L., Bicycle stability: A mathematical and numerical analysis, BA thesis, Physics Department, Princeton University, NJ, 1979
[56] Rankine W. J. M., “On the dynamical principles of the motion of velocipedes”, Engineer, 28 (1869), 79; 129 ; 153; 175; 29 (1870), 2
[57] Rice R. S., Bicycle dynamics, simplified steady state response characteristics and stability indices, Report ZN-5431-V-1, Calspan, Buffalo, NY, June 1974
[58] Rice R. S., Bicycle dynamics-simplified dynamic stability analysis, Report ZN-5921-V-2, Calspan, Buffalo, NY, September 1976
[59] Rice R. S., Roland R. D., An evaluation of the performance and handling qualities of bicycles, Report VJ-2888-K, Calspan, Buffalo, NY, April 1970
[60] Roland R. D., “Computer simulation of bicycle dynamics”, Mechanics and sport (AMD-4), ed. J. L. Bleustein, American Society of Mechanical Engineers, New York, 1973, 35–83
[61] Roland R. D., Lynch J. P., Bicycle dynamics tire characteristics and rider modeling, Report YA-3063-K-2, Calspan, Buffalo, NY, March 1972
[62] Roland R. D., Massing D. E., A digital computer simulation of bicycle dynamics, Report YA-3063-K-1, Calspan, Buffalo, NY, June 1971
[63] Routh G. R. R., “On the motion of a bicycle”, Messenger Math., 28 (1899), 151–169
[64] Ruina A., “Non-holonomic stability aspects of piecewise holonomic systems”, Rep. Math. Phys., 42 (1998), 91–100 | DOI | MR | Zbl
[65] “SAE (Society of Automotive Engineers): Vehicle dynamics terminology”, Proc. SAE J670e (2001 SAE handbook), SAE International, Warrendale, PA, 2001
[66] Sayers M. W., “Symbolic computer language for multibody systems”, J. Guid. Control Dyn., 14 (1991), 1153–1163 | DOI
[67] Sayers M. W., “Symbolic vector/dyadic multibody formalism for tree-topology systems”, J. Guid. Control Dyn., 14 (1991), 1240–1250 | DOI | Zbl
[68] Schwab A. L., Dynamics of flexible multibody systems, PhD thesis, Delft University of Technology, Delft, 2002
[69] Schwab A. L., Meijaard J. P., “Dynamics of flexible multibody systems having rolling contact: Application of the wheel element to the dynamics of road vehicles”, Vehicle Syst. Dyn. Suppl., 33 (1999), 338–349
[70] Schwab A. L., Meijaard J. P., “Dynamics of flexible multibody systems with non-holonomic constraints: A finite element approach”, Multibody Syst. Dyn., 10 (2003), 107–123 | DOI | MR | Zbl
[71] Schwab A. L., Meijaard J. P., Papadopoulos J. M., “Benchmark results on the linearized equations of motion of an uncontrolled bicycle”, KSME J. Mech. Sci. Technol., 19 (2005), 292–304 | DOI
[72] Sharp A., Bicycles and tricycles: An elementary treatise on their design and construction, Longmans, Green and Co., London, 1896, 530 pp. ; MIT Press, 1979 | Zbl
[73] Sharp R. S., “The stability and control of motorcycles”, J. Mech. Eng. Sci., 13 (1971), 316–329 | DOI
[74] Sharp R. S., “The lateral dynamics of motorcycles and bicycles”, Vehicle Syst. Dyn., 14 (1985), 265–283 | DOI
[75] Singh D. V., Advanced concepts of the stability of two-wheeled vehicles — application of mathematical analysis to actual vehicles, PhD thesis, Department of Mechanical Engineering, University of Wisconsin, Madison, 1964
[76] Singh D. V., Goel V. K., Stability of Rajdoot scooter, SAE paper 710273, Society of Automotive Engineers, New York, 1971
[77] Singh D. V., Goel V. K., “Stability of single track vehicles”, The Dynamics of Vehicles on Roads and on Tracks, Proc. IUTAM Symp. (Delft, The Netherlands, 18–22 August 1975), ed. H. B. Pacejka, Swets and Zeitlinger, Amsterdam, 1976, 187–196
[78] Steele G. L., Common LISP the language, 2nd ed., Digital Press, Woburn, MA, 1990, 1029 pp. | Zbl
[79] Strogatz S. H., Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, Perseus Books, Cambridge, MA, 1994, 512 pp.
[80] Timoshenko S., Young D. H., Advanced dynamics, McGraw-Hill, New York, 1948, 400 pp. | MR
[81] Van der Werff K., Kinematic and dynamic analysis of mechanisms, a finite element approach, PhD thesis, Delft University of Technology, Delft, 1977
[82] Van Zytveld P. J., A method for the automatic stabilization of an unmanned bicycle, Engineer's thesis, Department of Aeronautics and Astronautics, Stanford University, CA, 1975
[83] Wallace J., “The super-sports motor cycle (with an appendix on steering layout)”, Proc. Inst. Automob. Eng., 24 (1929), 161–231
[84] Weir D. H., Motorcycle handling dynamics and rider control and the effect of design configuration on response and performance, PhD thesis, University of California at Los Angeles, CA, 1972
[85] Weir D. H., Zellner J. W., “Lateral-directional motorcycle dynamics and rider control”, SAE paper 780304 (SP 428), Motorcycle dynamics and rider control: Congress and exposition (Detroit, MI, February 27–March 3, 1978), Society of Automotive Engineers, Warrendale, PA, 7–31
[86] Whipple F. J. W., “The stability of the motion of a bicycle”, Quart. J. Pure Appl. Math., 30 (1899), 312–348 | Zbl
[87] Wilson D. G., Bicycling science, 3rd ed., MIT Press, Cambridge, MA, 2004, 485 pp. | Zbl