Chaotic dynamics phenomena in the rubber rock-n-roller on a plane problem
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 309-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a problem of rolling of the dynamically asymmetric ball with displacement center of gravity on a plane without slipping and vertical rotating. It is shown that the dynamics of the ball is significantly affected by the type of reversibility. Depending on the type of the reversibility we found two different types of dynamical chaos: strange attractors and mixed chaotic dynamics. In this paper we describe a strange attractor development, and then its basic properties. A set of criteria by which in numerical experiments mixed dynamics may be distinguished from other types of dynamical chaos are given.
Keywords: rock-n-roller, rubber rolling, reversibility, focus, saddle, separatrix, homoclinic tangency, Lyapunov's exponents, mixed dynamics, strange attractor.
Mots-clés : bifurcation
@article{ND_2013_9_2_a7,
     author = {Alexey O. Kazakov},
     title = {Chaotic dynamics phenomena in the rubber rock-n-roller on a plane problem},
     journal = {Russian journal of nonlinear dynamics},
     pages = {309--325},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a7/}
}
TY  - JOUR
AU  - Alexey O. Kazakov
TI  - Chaotic dynamics phenomena in the rubber rock-n-roller on a plane problem
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 309
EP  - 325
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a7/
LA  - ru
ID  - ND_2013_9_2_a7
ER  - 
%0 Journal Article
%A Alexey O. Kazakov
%T Chaotic dynamics phenomena in the rubber rock-n-roller on a plane problem
%J Russian journal of nonlinear dynamics
%D 2013
%P 309-325
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a7/
%G ru
%F ND_2013_9_2_a7
Alexey O. Kazakov. Chaotic dynamics phenomena in the rubber rock-n-roller on a plane problem. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 309-325. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a7/

[1] Ehlers K., Koiller J., “Rubber rolling: Geometry and dynamics of 2-3-5 distributions”, Proc. IUTAM Symp. on Hamiltonian dynamics, vortex structures, turbulence (Moscow, Russia, 25–30 August 2006), 469–480 | MR

[2] Koiler J., Ehlers K. M., “Rubber rolling over a sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR

[3] Hadamard J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 4 sér., 5 (1895), 397–417

[4] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202

[5] A. V. Borisov, I. S. Mamaev (red.), Negolonomnye dinamicheskie sistemy: Integriruemost, khaos, strannye attraktory, Sb. st., Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 328 pp. | MR | Zbl

[6] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280

[7] Bizyaev I. A., Kazakov A. O., “Integriruemost i stokhastichnost nekotorykh zadach negolonomnoi mekhaniki”, Nelineinaya dinamika, 9:2 (2013), 257–265 | MR

[8] Lynch P., Bustamante M. D., “Precession and recession of the rock'n'roller”, J. Phys. A, 42:42 (2009), 425203, 25 pp. | DOI | MR | Zbl

[9] Lynch P., Bustamante M. D., Quaternion solution for the rock'n'roller: Box orbits, loop orbits and recession, 2012, arXiv: 1207.6022

[10] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp. | MR

[11] Chavoya-Aceves O., Piña E., “Symmetry lines of the dynamics of a heavy rigid body with a fixed point”, Il Nuovo Cimento B, 103:4 (1989), 369–387 | DOI | MR

[12] Devaney R. L., “Reversible diffeomorphisms and flows”, Trans. Amer. Math. Soc., 218 (1976), 89–113 | DOI | MR | Zbl

[13] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Kachenie bez vercheniya shara po ploskosti: otsutstvie invariantnoi mery v sisteme s polnym naborom integralov”, Nelineinaya dinamika, 8:3 (2012), 605–616

[14] Pikovsky A., Topaj D., “Reversibility vs. synchronization in oscillator latties”, Phys. D, 170 (2002), 118–130 | DOI | MR | Zbl

[15] Lukyanov V. I., Shilnikov L. P., “O nekotorykh bifurkatsiyakh dinamicheskikh sistem s gomoklinicheskimi strukturami”, Dokl. AN SSSR, 243:1 (1978), 26–29 | MR

[16] Afraimovich V. S., Shilnikov L. P., “O nekotorykh globalnykh bifurkatsiyakh, svyazannykh s ischeznoveniem nepodvizhnoi tochki tipa sedlo-uzel”, Dokl. AN SSSR, 219:6 (1974), 1281–1285

[17] Gonchenko S. V., Simó C., Vieiro A., “Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight”, Nonlinearity, 26:3 (2013), 621–678 | DOI | MR | Zbl

[18] Kuznetsov S. P., Zhalnin A. Yu., Sataev I. R., Sedova Yu. V., “Fenomeny nelineinoi dinamiki dissipativnykh sistem v negolonomnoi mekhanike «keltskogo kamnya»”, Nelineinaya dinamika, 8:4 (2012), 735–762

[19] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. 1; 2”, Meccanica, 15 (1980), 9–30 | DOI

[20] Feigenbaum M., “Universalnost v povedenii nelineinykh sistem”, UFN, 141 (1983), 343–374 | DOI

[21] Borisov A. V., Simakov N. N., “Bifurkatsii udvoeniya perioda v dinamike tverdogo tela”, Regulyarnaya i khaoticheskaya dinamika, 2:1 (1997), 64–75 | MR

[22] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “O nekotorykh novykh aspektakh khaoticheskoi dinamiki «keltskogo kamnya»”, Nelineinaya dinamika, 8:3 (2012), 507–518

[23] Lamb J. S. W., Stenkin O. V., “Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits”, Nonlinearity, 17:4 (2004), 1217–1244 | DOI | MR | Zbl

[24] Delshams A., Gonchenko S. V., Gonchenko V. S., Lázaro J. T., Sten'kin O. V., “Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps”, Nonlinearity, 26:1 (2013), 1–33 | DOI | MR | Zbl