Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 295-307
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the stochastic dynamics of FitzHugh–Nagumo model in the zone of limit cycles. For weak noise, random trajectories are concentrated in a small neighborhood of the initial deterministic unperturbed orbit of the limit cycle. As noise increases, in the zone of Canard cycles of the FitzHugh–Nagumo model, the bundle of random trajectories begins to split into two parts. This phenomenon is investigated using the density distribution of random trajectories. It is shown that the threshold noise intensity corresponding to the splitting bifurcation depends essentially on the degree of the stochastic sensitivity of the cycle. Using the stochastic sensitivity functions technique, a critical value corresponding to the supersensitive cycle is found and comparative parametric analysis of the effect of the stochastic cycle splitting in the vicinity of the critical value is carried out.
Keywords:
FitzHugh–Nagumo model, stochastic sensitivity, splitting bifurcation.
Mots-clés : cycles
Mots-clés : cycles
@article{ND_2013_9_2_a6,
author = {Irina A. Bashkirtseva and Lev B. Ryashko and Evdokia S. Slepukhina},
title = {Splitting bifurcation of stochastic cycles in the {FitzHugh--Nagumo} model},
journal = {Russian journal of nonlinear dynamics},
pages = {295--307},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/}
}
TY - JOUR AU - Irina A. Bashkirtseva AU - Lev B. Ryashko AU - Evdokia S. Slepukhina TI - Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model JO - Russian journal of nonlinear dynamics PY - 2013 SP - 295 EP - 307 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/ LA - ru ID - ND_2013_9_2_a6 ER -
%0 Journal Article %A Irina A. Bashkirtseva %A Lev B. Ryashko %A Evdokia S. Slepukhina %T Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model %J Russian journal of nonlinear dynamics %D 2013 %P 295-307 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/ %G ru %F ND_2013_9_2_a6
Irina A. Bashkirtseva; Lev B. Ryashko; Evdokia S. Slepukhina. Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 295-307. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/