Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_2_a6, author = {Irina A. Bashkirtseva and Lev B. Ryashko and Evdokia S. Slepukhina}, title = {Splitting bifurcation of stochastic cycles in the {FitzHugh--Nagumo} model}, journal = {Russian journal of nonlinear dynamics}, pages = {295--307}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/} }
TY - JOUR AU - Irina A. Bashkirtseva AU - Lev B. Ryashko AU - Evdokia S. Slepukhina TI - Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model JO - Russian journal of nonlinear dynamics PY - 2013 SP - 295 EP - 307 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/ LA - ru ID - ND_2013_9_2_a6 ER -
%0 Journal Article %A Irina A. Bashkirtseva %A Lev B. Ryashko %A Evdokia S. Slepukhina %T Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model %J Russian journal of nonlinear dynamics %D 2013 %P 295-307 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/ %G ru %F ND_2013_9_2_a6
Irina A. Bashkirtseva; Lev B. Ryashko; Evdokia S. Slepukhina. Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 295-307. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/
[1] Gammaitoni L., Hanggi P., Jung P., Marchesoni F., “Stochastic resonance”, Rev. Mod. Phys., 70:1 (1998), 223–287 | DOI
[2] McDonnell M. D., Stocks N. G., Pearce C. E. M., Abbott D., Stochastic resonance: From suprathreshold stochastic resonance to stochastic signal quantization, Cambridge Univ. Press, Cambridge, 2008, 425 pp.
[3] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Neiman A. B., Strelkova G. I., Shimanskii-Gaier L., Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh, IKI, M.–Izhevsk, 2003, 544 pp.
[4] Horsthemke W., Lefever R., Noise-induced transitions: Theory and applications in physics, chemistry, and biology, Springer Ser. Synergetics, 15, Springer, Berlin, 1984, 318 pp. | MR | Zbl
[5] Berglund N., Gentz B., Noise-induced phenomena in slow-fast dynamical systems: A sample-paths approach, Springer, Berlin, 2006, 289 pp. | MR | Zbl
[6] Matsumoto K., Tsuda I., “Noise-induced order”, J. Stat. Phys., 33:3 (1983), 757 | DOI | MR
[7] Gassmann F., “Noise-induced chaos-order transitions”, Phys. Rev. E, 55:3 (1997), 2215–2221 | DOI
[8] Gao J. B., Hwang S. K., Liu J. M., When can noise induce chaos?, Phys. Rev. Lett., 82:6 (1999), 1132–1135 | DOI
[9] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI
[10] Izhikevich E. M., Dynamical systems in neuroscience: The geometry of excitability and bursting. Computational neuroscience, MIT Press, Cambridge, 2007, 441 pp. | MR
[11] Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L., “Effects of noise in excitable systems”, Phys. Rep., 392 (2004), 321–424 | DOI
[12] Treutlein H., Schulten K., “Noise-induced neural impulses”, Eur. Biophys. J., 13 (1986), 355–356 | DOI
[13] Pikovsky A. S., Kurths J., “Coherence resonance in a noise-driven excitable system”, Phys. Rev. Lett., 78:5 (1997), 775–778 | DOI | MR | Zbl
[14] Lindner B., Schimansky-Geier L., “Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7276 | DOI | MR
[15] Makarov V. A., Nekorkin V. I., Velarde M. G., “Spiking behavior in a noise-driven system combining oscillatory and excitatory properties”, Phys. Rev. Lett., 86:15 (2001), 3431–3434 | DOI
[16] Lacasta A. M., Sagues F., Sancho J. M., “Coherence and anticoherence resonance tuned by noise”, Phys. Rev. E, 66:4 (2002), 045105(R), 4 pp. | DOI
[17] DeVille R. E. L., Vanden-Eijnden E., “Wavetrain response of an excitable medium to local stochastic forcing”, Phys. Rev. E, 72:3 (2005), 031105, 10 pp. | DOI | MR
[18] Bashkirtseva I., Ryashko L., “Analysis of excitability for the FitzHugh–Nagumo model via a stochastic sensitivity function technique”, Phys. Rev. E, 83:6 (2011), 061109, 8 pp. | DOI | MR
[19] Arnold L., Random dynamical systems, Springer, Berlin, 1998, 586 pp. | MR
[20] Vadivasova T. E., Anischenko V. S., “Stokhasticheskie bifurkatsii”, PND, 17:5 (2009), 3–16
[21] Diener F., Diener M., “Chasse au canard. 1: Les canards”, Collect. Math., 32:1 (1981), 37–119 | MR | Zbl
[22] Berglund N., Gentz B., Kuehn C., “Hunting french ducks in a noisy environment”, J. Differential Equations, 252:9 (2012), 4786–4841 | DOI | MR | Zbl
[23] Bashkirtseva I. A., Ryashko L. B., “Metod kvazipotentsiala v issledovanii lokalnoi ustoichivosti predelnykh tsiklov k sluchainym vozmuscheniyam”, PND, 9:6 (2001), 104–113 | MR
[24] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity of 3D-cycles”, Math. Comput. Simulation, 66 (2004), 55–67 | DOI | MR | Zbl
[25] Bashkirtseva I., Ryashko L., “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514, 4 pp. | DOI
[26] Ryashko L., Bashkirtseva I., “Analysis of stochastic attractors for population dynamical systems with environmental noise”, Neural Parallel Sci. Comput., 18:3–4 (2010), 433–440 | MR
[27] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 612 pp. | MR
[28] Gardiner K. V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986, 528 pp. | MR | Zbl
[29] Kurrer C., Schulten K., “Effect of noise and perturbations on limit cycle systems”, Phys. D, 50:3 (1991), 311–320 | DOI | MR | Zbl
[30] Milshtein G. N., Ryashko L. B., “Pervoe priblizhenie kvazipotentsiala v zadachakh ob ustoichivosti sistem so sluchainymi nevyrozhdennymi vozmuscheniyami”, PMM, 59:1 (1995), 53–63 | MR
[31] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979, 424 pp. | MR | Zbl
[32] Dembo A., Zeitouni O., Large deviations techniques and applications, Johnes and Bartlett Publishers, Boston, 1995, 346 pp. | MR
[33] Bashkirtseva I. A., Perevalova T. V., “Analiz stokhasticheskikh attraktorov pri bifurkatsii tochka pokoya–tsikl”, Avtomatika i telemekhanika, 2007, no. 10, 53–69 | MR | Zbl