Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 295-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the stochastic dynamics of FitzHugh–Nagumo model in the zone of limit cycles. For weak noise, random trajectories are concentrated in a small neighborhood of the initial deterministic unperturbed orbit of the limit cycle. As noise increases, in the zone of Canard cycles of the FitzHugh–Nagumo model, the bundle of random trajectories begins to split into two parts. This phenomenon is investigated using the density distribution of random trajectories. It is shown that the threshold noise intensity corresponding to the splitting bifurcation depends essentially on the degree of the stochastic sensitivity of the cycle. Using the stochastic sensitivity functions technique, a critical value corresponding to the supersensitive cycle is found and comparative parametric analysis of the effect of the stochastic cycle splitting in the vicinity of the critical value is carried out.
Keywords: FitzHugh–Nagumo model, stochastic sensitivity, splitting bifurcation.
Mots-clés : cycles
@article{ND_2013_9_2_a6,
     author = {Irina A. Bashkirtseva and Lev B. Ryashko and Evdokia S. Slepukhina},
     title = {Splitting bifurcation of stochastic cycles in the {FitzHugh--Nagumo} model},
     journal = {Russian journal of nonlinear dynamics},
     pages = {295--307},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/}
}
TY  - JOUR
AU  - Irina A. Bashkirtseva
AU  - Lev B. Ryashko
AU  - Evdokia S. Slepukhina
TI  - Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 295
EP  - 307
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/
LA  - ru
ID  - ND_2013_9_2_a6
ER  - 
%0 Journal Article
%A Irina A. Bashkirtseva
%A Lev B. Ryashko
%A Evdokia S. Slepukhina
%T Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model
%J Russian journal of nonlinear dynamics
%D 2013
%P 295-307
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/
%G ru
%F ND_2013_9_2_a6
Irina A. Bashkirtseva; Lev B. Ryashko; Evdokia S. Slepukhina. Splitting bifurcation of stochastic cycles in the FitzHugh--Nagumo model. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 295-307. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a6/

[1] Gammaitoni L., Hanggi P., Jung P., Marchesoni F., “Stochastic resonance”, Rev. Mod. Phys., 70:1 (1998), 223–287 | DOI

[2] McDonnell M. D., Stocks N. G., Pearce C. E. M., Abbott D., Stochastic resonance: From suprathreshold stochastic resonance to stochastic signal quantization, Cambridge Univ. Press, Cambridge, 2008, 425 pp.

[3] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Neiman A. B., Strelkova G. I., Shimanskii-Gaier L., Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh, IKI, M.–Izhevsk, 2003, 544 pp.

[4] Horsthemke W., Lefever R., Noise-induced transitions: Theory and applications in physics, chemistry, and biology, Springer Ser. Synergetics, 15, Springer, Berlin, 1984, 318 pp. | MR | Zbl

[5] Berglund N., Gentz B., Noise-induced phenomena in slow-fast dynamical systems: A sample-paths approach, Springer, Berlin, 2006, 289 pp. | MR | Zbl

[6] Matsumoto K., Tsuda I., “Noise-induced order”, J. Stat. Phys., 33:3 (1983), 757 | DOI | MR

[7] Gassmann F., “Noise-induced chaos-order transitions”, Phys. Rev. E, 55:3 (1997), 2215–2221 | DOI

[8] Gao J. B., Hwang S. K., Liu J. M., When can noise induce chaos?, Phys. Rev. Lett., 82:6 (1999), 1132–1135 | DOI

[9] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI

[10] Izhikevich E. M., Dynamical systems in neuroscience: The geometry of excitability and bursting. Computational neuroscience, MIT Press, Cambridge, 2007, 441 pp. | MR

[11] Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L., “Effects of noise in excitable systems”, Phys. Rep., 392 (2004), 321–424 | DOI

[12] Treutlein H., Schulten K., “Noise-induced neural impulses”, Eur. Biophys. J., 13 (1986), 355–356 | DOI

[13] Pikovsky A. S., Kurths J., “Coherence resonance in a noise-driven excitable system”, Phys. Rev. Lett., 78:5 (1997), 775–778 | DOI | MR | Zbl

[14] Lindner B., Schimansky-Geier L., “Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7276 | DOI | MR

[15] Makarov V. A., Nekorkin V. I., Velarde M. G., “Spiking behavior in a noise-driven system combining oscillatory and excitatory properties”, Phys. Rev. Lett., 86:15 (2001), 3431–3434 | DOI

[16] Lacasta A. M., Sagues F., Sancho J. M., “Coherence and anticoherence resonance tuned by noise”, Phys. Rev. E, 66:4 (2002), 045105(R), 4 pp. | DOI

[17] DeVille R. E. L., Vanden-Eijnden E., “Wavetrain response of an excitable medium to local stochastic forcing”, Phys. Rev. E, 72:3 (2005), 031105, 10 pp. | DOI | MR

[18] Bashkirtseva I., Ryashko L., “Analysis of excitability for the FitzHugh–Nagumo model via a stochastic sensitivity function technique”, Phys. Rev. E, 83:6 (2011), 061109, 8 pp. | DOI | MR

[19] Arnold L., Random dynamical systems, Springer, Berlin, 1998, 586 pp. | MR

[20] Vadivasova T. E., Anischenko V. S., “Stokhasticheskie bifurkatsii”, PND, 17:5 (2009), 3–16

[21] Diener F., Diener M., “Chasse au canard. 1: Les canards”, Collect. Math., 32:1 (1981), 37–119 | MR | Zbl

[22] Berglund N., Gentz B., Kuehn C., “Hunting french ducks in a noisy environment”, J. Differential Equations, 252:9 (2012), 4786–4841 | DOI | MR | Zbl

[23] Bashkirtseva I. A., Ryashko L. B., “Metod kvazipotentsiala v issledovanii lokalnoi ustoichivosti predelnykh tsiklov k sluchainym vozmuscheniyam”, PND, 9:6 (2001), 104–113 | MR

[24] Bashkirtseva I. A., Ryashko L. B., “Stochastic sensitivity of 3D-cycles”, Math. Comput. Simulation, 66 (2004), 55–67 | DOI | MR | Zbl

[25] Bashkirtseva I., Ryashko L., “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514, 4 pp. | DOI

[26] Ryashko L., Bashkirtseva I., “Analysis of stochastic attractors for population dynamical systems with environmental noise”, Neural Parallel Sci. Comput., 18:3–4 (2010), 433–440 | MR

[27] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 612 pp. | MR

[28] Gardiner K. V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986, 528 pp. | MR | Zbl

[29] Kurrer C., Schulten K., “Effect of noise and perturbations on limit cycle systems”, Phys. D, 50:3 (1991), 311–320 | DOI | MR | Zbl

[30] Milshtein G. N., Ryashko L. B., “Pervoe priblizhenie kvazipotentsiala v zadachakh ob ustoichivosti sistem so sluchainymi nevyrozhdennymi vozmuscheniyami”, PMM, 59:1 (1995), 53–63 | MR

[31] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979, 424 pp. | MR | Zbl

[32] Dembo A., Zeitouni O., Large deviations techniques and applications, Johnes and Bartlett Publishers, Boston, 1995, 346 pp. | MR

[33] Bashkirtseva I. A., Perevalova T. V., “Analiz stokhasticheskikh attraktorov pri bifurkatsii tochka pokoya–tsikl”, Avtomatika i telemekhanika, 2007, no. 10, 53–69 | MR | Zbl