Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_2_a5, author = {Olga B. Isaeva and Sergey P. Kuznetsov and Igor R. Sataev and Arkady Pikovsky}, title = {On a bifurcation scenario of a birth of attractor of {Smale--Williams} type}, journal = {Russian journal of nonlinear dynamics}, pages = {267--294}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a5/} }
TY - JOUR AU - Olga B. Isaeva AU - Sergey P. Kuznetsov AU - Igor R. Sataev AU - Arkady Pikovsky TI - On a bifurcation scenario of a birth of attractor of Smale--Williams type JO - Russian journal of nonlinear dynamics PY - 2013 SP - 267 EP - 294 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a5/ LA - ru ID - ND_2013_9_2_a5 ER -
%0 Journal Article %A Olga B. Isaeva %A Sergey P. Kuznetsov %A Igor R. Sataev %A Arkady Pikovsky %T On a bifurcation scenario of a birth of attractor of Smale--Williams type %J Russian journal of nonlinear dynamics %D 2013 %P 267-294 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a5/ %G ru %F ND_2013_9_2_a5
Olga B. Isaeva; Sergey P. Kuznetsov; Igor R. Sataev; Arkady Pikovsky. On a bifurcation scenario of a birth of attractor of Smale--Williams type. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 267-294. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a5/
[1] Belykh V., Belykh I., Mosekilde E., “The hyperbolic Plykin attractor can exist in neuron models”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:11 (2005), 3567–3578 | DOI | MR | Zbl
[2] Hunt T. J., MacKay R. S., “Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor”, Nonlinearity, 16:4 (2003), 1499–1510 | DOI | MR | Zbl
[3] Kuznetsov S. P., “Example of a physical system with a hyperbolic attractor of the Smale–Williams type”, Phys. Rev. Lett., 95 (2005), 144101, 4 pp. | DOI
[4] Kuznetsov S. P., Seleznev E. P., “Khaoticheskaya dinamika v fizicheskoi sisteme so strannym attraktorom tipa Smeila–Vilyamsa”, ZhETF, 129:2 (2006), 400–412 | MR
[5] Kuznetsov S. P., Ponomarenko V. I., “O vozmozhnosti realizatsii strannogo attraktora tipa Smeila–Vilyamsa v radiotekhnicheskom generatore s zapazdyvaniem”, PZhTF, 34:18 (2008), 1–8
[6] Isaeva O. B., Jalnine A. Yu., Kuznetsov S. P., “Arnold's cat map dynamics in a system of coupled nonautonomous van der Pol oscillators”, Phys. Rev. E, 74:4 (2006), 046207, 5 pp. | DOI
[7] Isaeva O. B., Kuznetsov S. P., Osbaldestin A. H., “A system of alternately excited coupled non-autonomous oscillators manifesting phenomena intrinsic to complex analytical maps”, Phys. D, 237:7 (2008), 873–884 | DOI | MR | Zbl
[8] Zhalnin A. Yu., Kuznetsov C. P., “O vozmozhnosti realizatsii v fizicheskoi sisteme strannogo nekhaoticheskogo attraktora Khanta i Otta”, ZhTF, 77:4 (2007), 10–18
[9] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999, 768 pp.
[10] Devaney R. L., An introduction to chaotic dynamical systems, 2nd ed., Addison-Wesley, New York, 1989, 336 pp. | MR | Zbl
[11] Afraimovich V., Hsu S.-B., Lectures on chaotic dynamical systems, AMS/IP Stud. Adv. Math., 28, AMS, Providence, RI, 2003, 353 pp. | MR | Zbl
[12] Kuznetsov S. P., Dinamicheskii khaos, 2-e izd., Fizmatlit, M., 2006, 356 pp.
[13] Kuznetsov S. P., Sataev I. R., “Hyperbolic attractor in a system of coupled nonautonomous van der Pol oscillators: Numerical test for expanding and contracting cones”, Phys. Lett. A, 365:1–2 (2007), 97–104 | DOI | Zbl
[14] Kuznetsov S. P., Sataev I. R., “Proverka uslovii giperbolichnosti khaoticheskogo attraktora v sisteme svyazannykh neavtonomnykh ostsillyatorov van der Polya”, PND, 2006, no. 5, 3–29 | Zbl
[15] Wilczak D., “Uniformly hyperbolic attractor of the Smale–Williams type for a Poincaré map in the Kuznetsov system”, SIAM J. Appl. Dyn. Syst., 9:4 (2010), 1 263–1283 | DOI | MR
[16] Jalnine A. Yu., Kuznetsov S. P., “Effect of noise in a nonautonomous system of alternately excited oscillators with a hyperbolic strange attractor”, Phys. Rev. E, 77:3 (2008), 036220, 6 pp. | DOI | MR
[17] Kuznetsov C. P., “O vozmozhnosti realizatsii parametricheskogo generatora giperbolicheskogo khaosa”, ZhETF, 133:2 (2008), 438–446
[18] Kuznetsov S. P., Pikovsky A., “Hyperbolic chaos in the phase dynamics of a Q-switched oscillator with delayed nonlinear feedbacks”, Europhys. Lett., 84:1 (2008), 10013–10018 | DOI | MR
[19] Kuznetsov S. P., Pikovsky A., “Autonomous coupled oscillators with hyperbolic strange attractors”, Phys. D, 232:2 (2007), 87–102 | DOI | MR | Zbl
[20] Emelyanov V. V., Kuznetsov S. P., Ryskin N. M., “Generator giperbolicheskogo khaosa na osnove svyazannykh proletnykh klistronov”, PZhTF, 35:16 (2009), 71–78 | MR
[21] Kuznetsov S. P., “Plykin-type attractor in nonautonomous coupled oscillators”, Chaos, 19:1 (2009), 013114, 10 pp. | DOI | MR
[22] Shilnikov L. P., Turaev D. V., “O katastrofakh golubogo neba”, Dokl. RAN, 342:5 (1995), 596–599 | MR
[23] Grebogi C., Ott E., Yorke J. A., “Crises, sudden changes in chaotic attractors, and transient chaos”, Phys. D, 7:1–3 (1983), 181–200 | DOI | MR
[24] Peitgen H.-O., Richter P. H., The beauty of fractals: Images of complex dynamical systems, Springer, New York, 1986, 199 pp. | MR | Zbl
[25] Kuznetsov Yu. A., Elements of applied bifurcation theory, Appl. Math. Sci., 112, 2nd ed., Springer, New York, 1998, 591 pp. | MR | Zbl
[26] Ott E., Chaos in dynamical systems, 2nd ed., Cambridge Univ. Press, Cambridge, 1993, 478 pp. | MR
[27] Bulian H., Paar V., “Many hole interactions and the average lifetimes of chaotic transients that precede controlled periodic motion”, Phys. Rev. E, 63:6 (2001), 066205, 13 pp. | DOI
[28] Paar V., Pavin N., “Missing preimages for chaotic logistic map with hole”, Fizika B, 6:1 (1996), 23–34
[29] Paar V., Pavin N., “Bursts of average lifetime of transients for chaotic logistic map with a hole”, Phys. Rev. E, 55:4 (1997), 4112–4115 | DOI
[30] Pikovsky A., Osipov G., Rosenblum M., Zaks M., Kurths J., “Attractor-repeller collisionand eyelet intermittency at the transition to phase synchronization”, Phys. Rev. Lett., 79:1 (1997), 47–50 | DOI
[31] Pikovsky A., Zaks M., Rosenblum M., Osipov G., Kurths J., “Phase synchronization of chaotic oscillations in terms of periodic orbits”, Chaos, 7:4 (1997), 680–687 | DOI | MR | Zbl
[32] Widom M., Bensimon D., Kadamoff L., Shenker S., “Strange objects in the complex plane”, J. Statist. Phys., 32:3 (1983), 443–454 | DOI | MR | Zbl
[33] Cvitanović P., Hansen K. T., “Bifurcation structures in maps of Hénon type”, Nonlinearity, 11:5 (1998), 1233–1261 | DOI | MR | Zbl
[34] Kuznetsov S. P., Hyperbolic chaos: A physicist's view, Springer, Berlin, 2012, 336 pp.
[35] Cvitanović P., “Periodic orbits as the skeleton of classical and quantum chaos”, Phys. D, 51:1–3 (1991), 138–151 | DOI | MR | Zbl
[36] Artuso R., Aurell E., Cvitanović P., “Resysling of strange sets. 1: Cycle expansions”, Nonlinearity, 3:2 (1990), 325–359 | DOI | MR | Zbl
[37] Auerbach D., Cvitanović P., Eckmann J.-P., Gunaratne G., Procaccia I., “Exploring chaotic motion through periodic orbits”, Phys. Rev. Lett., 58:23 (1987), 2387–2389 | DOI | MR
[38] Biham O., Wenzel W., “Unstable periodic orbits and the symbolic dynamics of the complex Hénon map”, Phys. Rev. A, 42:8 (1990), 4639–4646 | DOI | MR