On a bifurcation scenario of a birth of attractor of Smale--Williams type
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 267-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe one possible scenario of destruction or of a birth of the hyperbolic attractors considering the Smale–Williams solenoid as an example. The content of the transition observed under variation of the control parameter is the pairwise merge of the orbits belonging to the attractor and to the unstable invariant set on the border of the basin of attraction, in the course of the set of bifurcations of the saddle-node type. The transition is not a single event, but occupies a finite interval on the control parameter axis. In an extended space of the state variables and the control parameter this scenario can be regarded as a mutual transformation of the stable and unstable solenoids one to each other. Several model systems are discussed manifesting this scenario e.g. the specially designed iterative maps and the physically realizable system of coupled alternately activated non-autonomous van der Pol oscillators. Detailed studies of inherent features and of the related statistical and scaling properties of the scenario are provided.
Keywords: strange attractor, self-sustained oscillator, hyperbolic chaos.
Mots-clés : chaos, bifurcation
@article{ND_2013_9_2_a5,
     author = {Olga B. Isaeva and Sergey P. Kuznetsov and Igor R. Sataev and Arkady Pikovsky},
     title = {On a bifurcation scenario of a birth of attractor of {Smale--Williams} type},
     journal = {Russian journal of nonlinear dynamics},
     pages = {267--294},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a5/}
}
TY  - JOUR
AU  - Olga B. Isaeva
AU  - Sergey P. Kuznetsov
AU  - Igor R. Sataev
AU  - Arkady Pikovsky
TI  - On a bifurcation scenario of a birth of attractor of Smale--Williams type
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 267
EP  - 294
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a5/
LA  - ru
ID  - ND_2013_9_2_a5
ER  - 
%0 Journal Article
%A Olga B. Isaeva
%A Sergey P. Kuznetsov
%A Igor R. Sataev
%A Arkady Pikovsky
%T On a bifurcation scenario of a birth of attractor of Smale--Williams type
%J Russian journal of nonlinear dynamics
%D 2013
%P 267-294
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a5/
%G ru
%F ND_2013_9_2_a5
Olga B. Isaeva; Sergey P. Kuznetsov; Igor R. Sataev; Arkady Pikovsky. On a bifurcation scenario of a birth of attractor of Smale--Williams type. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 267-294. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a5/

[1] Belykh V., Belykh I., Mosekilde E., “The hyperbolic Plykin attractor can exist in neuron models”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:11 (2005), 3567–3578 | DOI | MR | Zbl

[2] Hunt T. J., MacKay R. S., “Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor”, Nonlinearity, 16:4 (2003), 1499–1510 | DOI | MR | Zbl

[3] Kuznetsov S. P., “Example of a physical system with a hyperbolic attractor of the Smale–Williams type”, Phys. Rev. Lett., 95 (2005), 144101, 4 pp. | DOI

[4] Kuznetsov S. P., Seleznev E. P., “Khaoticheskaya dinamika v fizicheskoi sisteme so strannym attraktorom tipa Smeila–Vilyamsa”, ZhETF, 129:2 (2006), 400–412 | MR

[5] Kuznetsov S. P., Ponomarenko V. I., “O vozmozhnosti realizatsii strannogo attraktora tipa Smeila–Vilyamsa v radiotekhnicheskom generatore s zapazdyvaniem”, PZhTF, 34:18 (2008), 1–8

[6] Isaeva O. B., Jalnine A. Yu., Kuznetsov S. P., “Arnold's cat map dynamics in a system of coupled nonautonomous van der Pol oscillators”, Phys. Rev. E, 74:4 (2006), 046207, 5 pp. | DOI

[7] Isaeva O. B., Kuznetsov S. P., Osbaldestin A. H., “A system of alternately excited coupled non-autonomous oscillators manifesting phenomena intrinsic to complex analytical maps”, Phys. D, 237:7 (2008), 873–884 | DOI | MR | Zbl

[8] Zhalnin A. Yu., Kuznetsov C. P., “O vozmozhnosti realizatsii v fizicheskoi sisteme strannogo nekhaoticheskogo attraktora Khanta i Otta”, ZhTF, 77:4 (2007), 10–18

[9] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999, 768 pp.

[10] Devaney R. L., An introduction to chaotic dynamical systems, 2nd ed., Addison-Wesley, New York, 1989, 336 pp. | MR | Zbl

[11] Afraimovich V., Hsu S.-B., Lectures on chaotic dynamical systems, AMS/IP Stud. Adv. Math., 28, AMS, Providence, RI, 2003, 353 pp. | MR | Zbl

[12] Kuznetsov S. P., Dinamicheskii khaos, 2-e izd., Fizmatlit, M., 2006, 356 pp.

[13] Kuznetsov S. P., Sataev I. R., “Hyperbolic attractor in a system of coupled nonautonomous van der Pol oscillators: Numerical test for expanding and contracting cones”, Phys. Lett. A, 365:1–2 (2007), 97–104 | DOI | Zbl

[14] Kuznetsov S. P., Sataev I. R., “Proverka uslovii giperbolichnosti khaoticheskogo attraktora v sisteme svyazannykh neavtonomnykh ostsillyatorov van der Polya”, PND, 2006, no. 5, 3–29 | Zbl

[15] Wilczak D., “Uniformly hyperbolic attractor of the Smale–Williams type for a Poincaré map in the Kuznetsov system”, SIAM J. Appl. Dyn. Syst., 9:4 (2010), 1 263–1283 | DOI | MR

[16] Jalnine A. Yu., Kuznetsov S. P., “Effect of noise in a nonautonomous system of alternately excited oscillators with a hyperbolic strange attractor”, Phys. Rev. E, 77:3 (2008), 036220, 6 pp. | DOI | MR

[17] Kuznetsov C. P., “O vozmozhnosti realizatsii parametricheskogo generatora giperbolicheskogo khaosa”, ZhETF, 133:2 (2008), 438–446

[18] Kuznetsov S. P., Pikovsky A., “Hyperbolic chaos in the phase dynamics of a Q-switched oscillator with delayed nonlinear feedbacks”, Europhys. Lett., 84:1 (2008), 10013–10018 | DOI | MR

[19] Kuznetsov S. P., Pikovsky A., “Autonomous coupled oscillators with hyperbolic strange attractors”, Phys. D, 232:2 (2007), 87–102 | DOI | MR | Zbl

[20] Emelyanov V. V., Kuznetsov S. P., Ryskin N. M., “Generator giperbolicheskogo khaosa na osnove svyazannykh proletnykh klistronov”, PZhTF, 35:16 (2009), 71–78 | MR

[21] Kuznetsov S. P., “Plykin-type attractor in nonautonomous coupled oscillators”, Chaos, 19:1 (2009), 013114, 10 pp. | DOI | MR

[22] Shilnikov L. P., Turaev D. V., “O katastrofakh golubogo neba”, Dokl. RAN, 342:5 (1995), 596–599 | MR

[23] Grebogi C., Ott E., Yorke J. A., “Crises, sudden changes in chaotic attractors, and transient chaos”, Phys. D, 7:1–3 (1983), 181–200 | DOI | MR

[24] Peitgen H.-O., Richter P. H., The beauty of fractals: Images of complex dynamical systems, Springer, New York, 1986, 199 pp. | MR | Zbl

[25] Kuznetsov Yu. A., Elements of applied bifurcation theory, Appl. Math. Sci., 112, 2nd ed., Springer, New York, 1998, 591 pp. | MR | Zbl

[26] Ott E., Chaos in dynamical systems, 2nd ed., Cambridge Univ. Press, Cambridge, 1993, 478 pp. | MR

[27] Bulian H., Paar V., “Many hole interactions and the average lifetimes of chaotic transients that precede controlled periodic motion”, Phys. Rev. E, 63:6 (2001), 066205, 13 pp. | DOI

[28] Paar V., Pavin N., “Missing preimages for chaotic logistic map with hole”, Fizika B, 6:1 (1996), 23–34

[29] Paar V., Pavin N., “Bursts of average lifetime of transients for chaotic logistic map with a hole”, Phys. Rev. E, 55:4 (1997), 4112–4115 | DOI

[30] Pikovsky A., Osipov G., Rosenblum M., Zaks M., Kurths J., “Attractor-repeller collisionand eyelet intermittency at the transition to phase synchronization”, Phys. Rev. Lett., 79:1 (1997), 47–50 | DOI

[31] Pikovsky A., Zaks M., Rosenblum M., Osipov G., Kurths J., “Phase synchronization of chaotic oscillations in terms of periodic orbits”, Chaos, 7:4 (1997), 680–687 | DOI | MR | Zbl

[32] Widom M., Bensimon D., Kadamoff L., Shenker S., “Strange objects in the complex plane”, J. Statist. Phys., 32:3 (1983), 443–454 | DOI | MR | Zbl

[33] Cvitanović P., Hansen K. T., “Bifurcation structures in maps of Hénon type”, Nonlinearity, 11:5 (1998), 1233–1261 | DOI | MR | Zbl

[34] Kuznetsov S. P., Hyperbolic chaos: A physicist's view, Springer, Berlin, 2012, 336 pp.

[35] Cvitanović P., “Periodic orbits as the skeleton of classical and quantum chaos”, Phys. D, 51:1–3 (1991), 138–151 | DOI | MR | Zbl

[36] Artuso R., Aurell E., Cvitanović P., “Resysling of strange sets. 1: Cycle expansions”, Nonlinearity, 3:2 (1990), 325–359 | DOI | MR | Zbl

[37] Auerbach D., Cvitanović P., Eckmann J.-P., Gunaratne G., Procaccia I., “Exploring chaotic motion through periodic orbits”, Phys. Rev. Lett., 58:23 (1987), 2387–2389 | DOI | MR

[38] Biham O., Wenzel W., “Unstable periodic orbits and the symbolic dynamics of the complex Hénon map”, Phys. Rev. A, 42:8 (1990), 4639–4646 | DOI | MR