The Euler--Jacobi--Lie integrability theorem
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 229-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper addresses a class of problems associated with the conditions for exact integrability of a system of ordinary differential equations expressed in terms of the properties of tensor invariants. The general theorem of integrability of the system of $n$ differential equations is proved, which admits $n-2$ independent symmetry fields and an invariant volume $n$-form (integral invariant). General results are applied to the study of steady motions of a continuous medium with infinite conductivity.
Keywords: symmetry field, integral invariant, nilpotent group, magnetic hydrodynamics.
@article{ND_2013_9_2_a2,
     author = {Valery V. Kozlov},
     title = {The {Euler--Jacobi--Lie} integrability theorem},
     journal = {Russian journal of nonlinear dynamics},
     pages = {229--245},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a2/}
}
TY  - JOUR
AU  - Valery V. Kozlov
TI  - The Euler--Jacobi--Lie integrability theorem
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 229
EP  - 245
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a2/
LA  - ru
ID  - ND_2013_9_2_a2
ER  - 
%0 Journal Article
%A Valery V. Kozlov
%T The Euler--Jacobi--Lie integrability theorem
%J Russian journal of nonlinear dynamics
%D 2013
%P 229-245
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a2/
%G ru
%F ND_2013_9_2_a2
Valery V. Kozlov. The Euler--Jacobi--Lie integrability theorem. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 229-245. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a2/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2002, 416 pp. | Zbl

[2] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | MR | Zbl

[3] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 432 pp. | MR

[4] Kozlov V. V., “Zamechaniya ob odnoi teoreme Li, kasayuscheisya tochnoi integriruemosti differentsialnykh uravnenii”, Differents. uravneniya, 41:4 (2005), 553–555 | MR | Zbl

[5] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[6] Bolotin S. V., Kozlov V. V., “Symmetry fields of geodesic flows”, Russ. J. Math. Phys., 3:3 (1995), 279–295 | MR | Zbl

[7] Kozlov V. V., “Symmetries and regular behavior of Hamiltonian systems”, Chaos, 6:1 (1996), 1–5 | DOI | MR | Zbl

[8] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–111 | MR

[9] Sedov L. I., Mekhanika sploshnoi sredy, V 2-kh tt., v. 1, Nauka, M., 1970, 492 pp. | MR

[10] Kozlov V. V., “Zamechaniya o statsionarnykh vikhrevykh dvizheniyakh sploshnoi sredy”, PMM, 47:2 (1983), 341–342 | MR

[11] Arnold V. I., “O topologii trekhmernykh statsionarnykh techenii idealnoi zhidkosti”, PMM, 30:1 (1966), 183–185 | MR