Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_2_a2, author = {Valery V. Kozlov}, title = {The {Euler--Jacobi--Lie} integrability theorem}, journal = {Russian journal of nonlinear dynamics}, pages = {229--245}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a2/} }
Valery V. Kozlov. The Euler--Jacobi--Lie integrability theorem. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 229-245. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a2/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2002, 416 pp. | Zbl
[2] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | MR | Zbl
[3] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 432 pp. | MR
[4] Kozlov V. V., “Zamechaniya ob odnoi teoreme Li, kasayuscheisya tochnoi integriruemosti differentsialnykh uravnenii”, Differents. uravneniya, 41:4 (2005), 553–555 | MR | Zbl
[5] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[6] Bolotin S. V., Kozlov V. V., “Symmetry fields of geodesic flows”, Russ. J. Math. Phys., 3:3 (1995), 279–295 | MR | Zbl
[7] Kozlov V. V., “Symmetries and regular behavior of Hamiltonian systems”, Chaos, 6:1 (1996), 1–5 | DOI | MR | Zbl
[8] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–111 | MR
[9] Sedov L. I., Mekhanika sploshnoi sredy, V 2-kh tt., v. 1, Nauka, M., 1970, 492 pp. | MR
[10] Kozlov V. V., “Zamechaniya o statsionarnykh vikhrevykh dvizheniyakh sploshnoi sredy”, PMM, 47:2 (1983), 341–342 | MR
[11] Arnold V. I., “O topologii trekhmernykh statsionarnykh techenii idealnoi zhidkosti”, PMM, 30:1 (1966), 183–185 | MR