Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_2_a10, author = {J. D. G. Kooijman and J. P. Meijaard and Jim M. Papadopoulos and Andy Ruina and A. L. Schwab}, title = {A bicycle can be self-stable without gyroscopic or caster effects}, journal = {Russian journal of nonlinear dynamics}, pages = {377--386}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a10/} }
TY - JOUR AU - J. D. G. Kooijman AU - J. P. Meijaard AU - Jim M. Papadopoulos AU - Andy Ruina AU - A. L. Schwab TI - A bicycle can be self-stable without gyroscopic or caster effects JO - Russian journal of nonlinear dynamics PY - 2013 SP - 377 EP - 386 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a10/ LA - ru ID - ND_2013_9_2_a10 ER -
%0 Journal Article %A J. D. G. Kooijman %A J. P. Meijaard %A Jim M. Papadopoulos %A Andy Ruina %A A. L. Schwab %T A bicycle can be self-stable without gyroscopic or caster effects %J Russian journal of nonlinear dynamics %D 2013 %P 377-386 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a10/ %G ru %F ND_2013_9_2_a10
J. D. G. Kooijman; J. P. Meijaard; Jim M. Papadopoulos; Andy Ruina; A. L. Schwab. A bicycle can be self-stable without gyroscopic or caster effects. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 377-386. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a10/
[1] Rankine W. J. M., “On the dynamical principles of the motion of velocipedes”, Engineer, 28 (1869), 79; 129 ; 153; 175; 29 (1870), 2
[2] Spencer C., The modern bicycle, Frederick Warne and Co., London, 1876, 23–24
[3] Kooijman J. D. G., Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L., “A bicycle can be self-stable without gyroscopic or caster effects”, supplementary material available online, Science, 332:6027 (2011), 339–342 | DOI | MR | Zbl
[4] Carvallo E., Théorie du mouvement du monocycle et de la bicyclette, Gauthier-Villars, Paris, 1899
[5] Whipple F. J. W., “The stability of the motion of a bicycle”, Q. J. Pure Appl. Math., 30 (1899), 312–348 | Zbl
[6] Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L., “Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2084 (2007), 1955–1982 | DOI | MR | Zbl
[7] Kooijman J. D. G., Schwab A. L., Meijaard J. P., “Experimental validation of a model of an uncontrolled bicycle”, Multibody Syst. Dyn., 19:1–2 (2008), 115–132 | DOI | Zbl
[8] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Fizmatlit, M., 1967, 520 pp.; Neimark Ju. I., Fufaev N. A., Dynamics of nonholonomic systems, Trans. Math. Monogr., 33, AMS, Providence, RI, 1972 | Zbl
[9] Dzhouns D., Pochemu ustoichiv velosiped?, Kvant, 1970, no. 12, 24–30
[10] Åström K. J., Klein R. E., Lennartsson A., “Bicycle dynamics and control, adapted bicycles for education and research”, IEEE Control Syst. Mag., 25:4 (2005), 26–47 | DOI | MR
[11] Klein F., Sommerfeld A., Über die Theorie des Kreisels, Teubner, Leipzig, 1910, 863–884
[12] Griffiths J. A., “On the distribution of the wheel load in cycles”, Proc. of the Institution of Mechanical Engineers, 37 (1886), 128–188 | DOI
[13] Thomson W., Popular lectures and addresses, In 3 Vols., v. 1, Constitution of matter, Macmillan and Co., London, 1889, 142–146
[14] Papadopoulos J. M., Bicycle steering dynamics and self-stability: A summary report on work in progress, Technical report. Cornell Bicycle Research Project, Cornell University, Ithaca, NY, 1987
[15] Routh E. J., “Stability of a dynamical system with two independent motions”, Proc. London Math. Soc., 1:1 (1873), 97–99 | DOI | MR
[16] Collins R. N., A mathematical analysis of the stability of two wheeled vehicles, PhD thesis, University of Wisconsin, Madison, 1963
[17] Chateau C., “Vélocipédie: De l'aplomb dans les bicycles”, La Nature: Revue des sciences et de leurs applications aux arts et à l'industrie, 1892, no. 1014, 353–355