A bicycle can be self-stable without gyroscopic or caster effects
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 377-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

A riderless bicycle can automatically steer itself so as to recover from falls. The common view is that this self-steering is caused by gyroscopic precession of the front wheel, or by the wheel contact trailing like a caster behind the steer axis. We show that neither effect is necessary for self-stability. Using linearized stability calculations as a guide, we built a bicycle with extra counter-rotating wheels (canceling the wheel spin angular momentum) and with its front-wheel ground-contact forward of the steer axis (making the trailing distance negative). When laterally disturbed from rolling straight this bicycle automatically recovers to upright travel. Our results show that various design variables, like the front mass location and the steer axis tilt, contribute to stability in complex interacting ways.
@article{ND_2013_9_2_a10,
     author = {J. D. G. Kooijman and J. P. Meijaard and Jim M. Papadopoulos and Andy Ruina and A. L. Schwab},
     title = {A bicycle can be self-stable without gyroscopic or caster effects},
     journal = {Russian journal of nonlinear dynamics},
     pages = {377--386},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a10/}
}
TY  - JOUR
AU  - J. D. G. Kooijman
AU  - J. P. Meijaard
AU  - Jim M. Papadopoulos
AU  - Andy Ruina
AU  - A. L. Schwab
TI  - A bicycle can be self-stable without gyroscopic or caster effects
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 377
EP  - 386
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a10/
LA  - ru
ID  - ND_2013_9_2_a10
ER  - 
%0 Journal Article
%A J. D. G. Kooijman
%A J. P. Meijaard
%A Jim M. Papadopoulos
%A Andy Ruina
%A A. L. Schwab
%T A bicycle can be self-stable without gyroscopic or caster effects
%J Russian journal of nonlinear dynamics
%D 2013
%P 377-386
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a10/
%G ru
%F ND_2013_9_2_a10
J. D. G. Kooijman; J. P. Meijaard; Jim M. Papadopoulos; Andy Ruina; A. L. Schwab. A bicycle can be self-stable without gyroscopic or caster effects. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 377-386. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a10/

[1] Rankine W. J. M., “On the dynamical principles of the motion of velocipedes”, Engineer, 28 (1869), 79; 129 ; 153; 175; 29 (1870), 2

[2] Spencer C., The modern bicycle, Frederick Warne and Co., London, 1876, 23–24

[3] Kooijman J. D. G., Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L., “A bicycle can be self-stable without gyroscopic or caster effects”, supplementary material available online, Science, 332:6027 (2011), 339–342 | DOI | MR | Zbl

[4] Carvallo E., Théorie du mouvement du monocycle et de la bicyclette, Gauthier-Villars, Paris, 1899

[5] Whipple F. J. W., “The stability of the motion of a bicycle”, Q. J. Pure Appl. Math., 30 (1899), 312–348 | Zbl

[6] Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L., “Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2084 (2007), 1955–1982 | DOI | MR | Zbl

[7] Kooijman J. D. G., Schwab A. L., Meijaard J. P., “Experimental validation of a model of an uncontrolled bicycle”, Multibody Syst. Dyn., 19:1–2 (2008), 115–132 | DOI | Zbl

[8] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Fizmatlit, M., 1967, 520 pp.; Neimark Ju. I., Fufaev N. A., Dynamics of nonholonomic systems, Trans. Math. Monogr., 33, AMS, Providence, RI, 1972 | Zbl

[9] Dzhouns D., Pochemu ustoichiv velosiped?, Kvant, 1970, no. 12, 24–30

[10] Åström K. J., Klein R. E., Lennartsson A., “Bicycle dynamics and control, adapted bicycles for education and research”, IEEE Control Syst. Mag., 25:4 (2005), 26–47 | DOI | MR

[11] Klein F., Sommerfeld A., Über die Theorie des Kreisels, Teubner, Leipzig, 1910, 863–884

[12] Griffiths J. A., “On the distribution of the wheel load in cycles”, Proc. of the Institution of Mechanical Engineers, 37 (1886), 128–188 | DOI

[13] Thomson W., Popular lectures and addresses, In 3 Vols., v. 1, Constitution of matter, Macmillan and Co., London, 1889, 142–146

[14] Papadopoulos J. M., Bicycle steering dynamics and self-stability: A summary report on work in progress, Technical report. Cornell Bicycle Research Project, Cornell University, Ithaca, NY, 1987

[15] Routh E. J., “Stability of a dynamical system with two independent motions”, Proc. London Math. Soc., 1:1 (1873), 97–99 | DOI | MR

[16] Collins R. N., A mathematical analysis of the stability of two wheeled vehicles, PhD thesis, University of Wisconsin, Madison, 1963

[17] Chateau C., “Vélocipédie: De l'aplomb dans les bicycles”, La Nature: Revue des sciences et de leurs applications aux arts et à l'industrie, 1892, no. 1014, 353–355