Topological monodromy in nonholonomic systems
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 203-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phenomenon of a topological monodromy in integrable Hamiltonian and nonholonomic systems is discussed. An efficient method for computing and visualizing the monodromy is developed. The comparative analysis of the topological monodromy is given for the rolling ellipsoid of revolution problem in two cases, namely, on a smooth and on a rough plane. The first of these systems is Hamiltonian, the second is nonholonomic. We show that, from the viewpoint of monodromy, there is no difference between the two systems, and thus disprove the conjecture by Cushman and Duistermaat stating that the topological monodromy gives a topological obstruction for Hamiltonization of the rolling ellipsoid of revolution on a rough plane.
Keywords: topological monodromy, integrable systems, nonholonomic systems, Poincaré map, bifurcation analysis, focus-focus singularities.
@article{ND_2013_9_2_a1,
     author = {Alexey V. Bolsinov and Alexander A. Kilin and Alexey O. Kazakov},
     title = {Topological monodromy in nonholonomic systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {203--227},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a1/}
}
TY  - JOUR
AU  - Alexey V. Bolsinov
AU  - Alexander A. Kilin
AU  - Alexey O. Kazakov
TI  - Topological monodromy in nonholonomic systems
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 203
EP  - 227
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a1/
LA  - ru
ID  - ND_2013_9_2_a1
ER  - 
%0 Journal Article
%A Alexey V. Bolsinov
%A Alexander A. Kilin
%A Alexey O. Kazakov
%T Topological monodromy in nonholonomic systems
%J Russian journal of nonlinear dynamics
%D 2013
%P 203-227
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a1/
%G ru
%F ND_2013_9_2_a1
Alexey V. Bolsinov; Alexander A. Kilin; Alexey O. Kazakov. Topological monodromy in nonholonomic systems. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 203-227. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a1/

[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854

[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., UdGU, Izhevsk, 1999, 444 pp.; 448 с.

[3] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 173:4 (2003), 407–418 | DOI

[4] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp. | MR

[5] Borisov A. V., Kilin A. A., Mamaev I. S., “Novye effekty v dinamike keltskikh kamnei”, Dokl. RAN, 408:2 (2006), 192–195 | MR | Zbl

[6] Borisov A. V., Kilin A. A., Mamaev I. S., “K odnoi negolonomnoi dinamicheskoi probleme”, Matem. zametki, 79:5 (2006), 790–796 | DOI | MR | Zbl

[7] Zobova A. A., Karapetyan A. V., “Postroenie bifurkatsionnykh diagramm Puankare–Chetaeva i Smeila dlya konservativnykh negolonomnykh sistem s simmetriei”, PMM, 69:2 (2005), 202–214 | MR | Zbl

[8] Ivochkin M. Yu., “Topologicheskii analiz dvizheniya ellipsoida po gladkoi ploskosti”, Matem. sb., 199:6 (2008), 85–104 | DOI | MR | Zbl

[9] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb{R}^2$ v rasshirennykh okrestnostyakh prostykh osobykh tochek, 1”, Matem. sb., 183:12 (1992), 141–176 | MR | Zbl

[10] Matveev V. S., “Integriruemye gamiltonovy sistemy s dvumya stepenyami svobody. Topologicheskoe stroenie nasyschennykh okrestnostei tochek tipa fokus-fokus i sedlo-sedlo”, Matem. sb., 187:4 (1996), 29–58 | DOI | MR | Zbl

[11] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314

[12] Balseiro P., García-Naranjo L., “Gauge transformations, twisted Poisson brackets and Hamiltonization of nonholonomic systems”, Arch. Ration. Mech. Anal., 205:1 (2012), 267–310 | DOI | MR | Zbl

[13] Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A, 46:8 (2013), 1–11 | DOI | MR

[14] Bolsinov A. V., Dullin H., Wittek A., “Topology of energy surfaces and existence of transversal Poincaré sections”, J. Phys. A, 29:16 (1996), 4977–4985 | DOI | MR | Zbl

[15] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR

[16] Bolsinov A. V., Oshemkov A. A., “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, eds. A. V. Bolsinov, A. T. Fomenko, A. A. Oshemkov, Camb. Sci. Publ., Cambridge, 2006, 1–67 | MR | Zbl

[17] Borisov A. V., Jalnine A. Yu., Kuznetsov S. P., Sataev I. R., Sedova J. V., “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI | MR | Zbl

[18] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116 | DOI | MR | Zbl

[19] Borisov A. V., Kilin A. A., Mamaev I. S., “Generalized Chaplygin's transformation and explicit integration of a system with a spherical support”, Regul. Chaotic Dyn., 17:2 (2012), 170–190 | DOI | MR | Zbl

[20] Borisov A. V., Mamaev I. S., “Rolling of a rigid body on plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[21] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[22] Borisov A. V., Mamaev I. S., Kilin A. A., “Dynamics of rolling disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212 | DOI | MR | Zbl

[23] Cushman R., “Routh's sphere”, Rep. Math. Phys., 42:1–2 (1998), 47–70 | DOI | MR | Zbl

[24] Cushman R., Duistermaat J. J., “Non-Hamiltonian monodromy”, J. Differential Equations, 172:1 (2001), 42–58 | DOI | MR | Zbl

[25] Delosa J. B., Dhontb G., Sadovskii D. A., Zhilinskii B. I., “Dynamical manifestations of Hamiltonian monodromy”, Ann. Physics, 324:9 (2009), 1953–1982 | DOI | MR

[26] Duistermaat J. J., “On global action-angle coordinates”, Comm. Pure Appl. Math., 33:6 (1980), 687–706 | DOI | MR | Zbl

[27] Fernandez O., Mestdag T., Bloch A., “A generalization of Chaplygin's reducibility theorem”, Regul. Chaotic Dyn., 14:6 (2009), 635–655 | DOI | MR | Zbl

[28] Kozlov V. V., “On invariant manifolds of nonholonomic systems”, Regul. Chaotic Dyn., 17:2 (2012), 131–141 | DOI | MR | Zbl

[29] Nguyen T. Z., “A note on focus-focus singularities”, Differential Geom. Appl., 7:2 (1997), 123–130 | DOI | MR | Zbl

[30] Tsiganov A. V., “One invariant measure and different Poisson brackets for two non-holonomic systems”, Regul. Chaotic Dyn., 17:1 (2012), 72–96 | DOI | MR | Zbl

[31] Tsiganov A. V., “On the Poisson structures for the nonholonomic Chaplygin and Veselova problems”, Regul. Chaotic Dyn., 17:5 (2012), 439–450 | DOI | MR | Zbl

[32] Zhilinskii B. I., “Hamiltonian monodromy, its manifestations and generalizations”, Geometric mechanics, RIMS Workshop (Kyoto, Dec. 2009), RIMS Kokyuroku, 1692, Kyoto Univ., Kyoto, 2010, 57–77