Lagrange's equations in nonholonomic mechanics
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 39-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question on possibility of writing the equations of motion of a nonholonomic system in the form of Lagrange's equations of the 2nd kind for the minimal number of parameters is considered. The corresponding results of J. Hadamard and H. Beghin are discussed. It is proved that in the classic problem on rolling of a rigid body along a fixed plane without sliding the case when all three Chaplygin's equations become Lagrange's equations does not exist. For the same problem with two degrees of freedom the most general kind of nonholonomic constraints that provides the correct using Lagrange's equations without multipliers, is established. Examples are given.
Keywords: constraints, the Lagrange equations of the 1st and 2nd kind, rolling of a rigid body without sliding, possible displacements of a system.
Mots-clés : multipliers of constraints
@article{ND_2013_9_1_a3,
     author = {Alexandr S. Sumbatov},
     title = {Lagrange's equations in nonholonomic mechanics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a3/}
}
TY  - JOUR
AU  - Alexandr S. Sumbatov
TI  - Lagrange's equations in nonholonomic mechanics
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 39
EP  - 50
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_1_a3/
LA  - ru
ID  - ND_2013_9_1_a3
ER  - 
%0 Journal Article
%A Alexandr S. Sumbatov
%T Lagrange's equations in nonholonomic mechanics
%J Russian journal of nonlinear dynamics
%D 2013
%P 39-50
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_1_a3/
%G ru
%F ND_2013_9_1_a3
Alexandr S. Sumbatov. Lagrange's equations in nonholonomic mechanics. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 39-50. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a3/

[1] Arnold V. I., Gyuigens i Barrou, Nyuton i Guk: Pervye shagi matematicheskogo analiza i teorii katastrof, ot evolvent do kvazikristallov, Nauka, M., 1989, 96 pp. | MR

[2] Ferrers N. M., “Extension of Lagrange's equations”, Q. J. Pure Appl. Math., 1972, no. 45, March, 1–5

[3] Vierkandt A., “Über gleitende und rollende Bewegung”, Monatsh. Math. Phys., 3 (1892), 31–54 ; 97–134 | DOI | MR | MR | Zbl

[4] Lindelöf E., “Sur les mouvement d'un corps de revolution roulant sur un plan horizontal”, Acta Soc. Sci. Fenn., 20:10 (1895), 3–18

[5] Chaplygin S. A., “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”, Issledovaniya po dinamike negolonomnykh sistem, Gostekhizdat, M.–L., 1949, 9–27; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, M.–Л., 1948, 57–75

[6] Appell P., Traité de Mécanique rationelle, v. 2, Dinamique des systèmes; Mécanique analytique, Gauthier-Villars, Paris, 1896, 538 pp. | Zbl

[7] Appell P., Les mouvements de roulement en dynamique, avec deux notes de M. Hadamard, Scientia, Série physico-mathématique, 4, Carré et Naud, Paris, 1899, 70 pp.

[8] Routh E. J., Dynamics of a system of rigid bodies, In 2 vols., 6th ed., Macmillan, London, 1905 | Zbl

[9] A. Voss, E. Cosserat, F. Cosserat, Encyclopédie des Sciences Mathématiques Pures et Appliquées, v. 4, Mécanique. Fasc. 4-1. Principes de la mécanique rationelle, Gauthier-Villars, Paris; Teubner, Leipzig, 1915, 187 pp.

[10] Grigoryan A. T., Fradlin B. N., Istoriya mekhaniki tverdogo tela, Nauka, M., 1982, 293 pp.

[11] Merkin D. R., Kratkaya istoriya klassicheskoi mekhaniki Galileya–Nyutona, Fizmatlit, M., 1994, 160 pp.

[12] Hadamard J., “Sur les mouvements de roulement”, Mém. Soc. sci. phys. nat. Bordeaux. 4$\rm ^e$ sér., 5 (1895), 397–417

[13] Béghin H., Étude théorique des compas gyrostatiques Anschütz et Sperri, Thése, Faculté des Sciences de Paris, Paris, 1922, 132 pp.

[14] Béghin H., “Sur les conditions d'application des équations de Lagrange à un système non holonome”, Bull. Soc. Math. France, 57 (1929), 118–124 | MR | Zbl

[15] Appel P., Teoreticheskaya mekhanika, v. 2, Fizmatgiz, M., 1960, 487 pp.

[16] Novoselov V. S., Variatsionnye metody v mekhanike, LGU, Leningrad, 1966, 72 pp. | MR

[17] Sumbatov A. S., “O printsipe Gamiltona dlya negolonomnykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1970, no. 1, 98–101 | Zbl

[18] Voronets P. V., “Preobrazovanie uravnenii dvizheniya s pomoschyu lineinykh integralov dvizheniya (s prilozheniem k zadache ob $n$ telakh)”, Izv. Kievsk. un-ta, 47:1 (1907), IV.1–IV.82; 2, IV.83–IV.180

[19] Synge J. L., “Classical dynamics”, Handbuch der Physik, v. III/1, ed. S. Flügge, Springer, Berlin, 1960, 1–225 | MR

[20] Kane T. R., “Dynamics of nonholonomic systems”, J. Appl. Mech., 28:4 (1961), 574–578 | DOI | MR | Zbl

[21] Shagi-Sultan I. Z., Metod kinematicheskikh kharakteristik v analiticheskoi mekhanike, Nauka, Alma-Ata, 1966, 85 pp.