Dynamics of coupled nephrons and broadband synchronization
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 875-896.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nephrons (functional units of the kidney) may be described by means of the system of order differential equations. This provides an opportunity to describe dynamics of both the individual and coupled nephrons by using the theory of dynamical systems and the bifurcation theory. Considering a model of a pair of vascular coupled nephrons the present paper examines the effect that the non-identity of nephrons, i. e. non-identity of peak-to-peak variations in their arteriolar radii in autonomous state, has on the behavior of the coupled system. We investigate the appearance possibility of so-called broadband synchronization region, where the stronger nephron starts to suppress the autonomous oscillations of the weaker nephron. We investigate also the appearance possibility of the regime of total oscillator death, where oscillations of both nephrons are abolished.
Mots-clés : coupled nephrons
Keywords: total oscillator death, broadband synchronization.
@article{ND_2012_8_5_a1,
     author = {Yulia P. Emelianova and Alexander P. Kuznetsov and Erik Mosekilde and Jakob L. Laugesen},
     title = {Dynamics of coupled nephrons and broadband synchronization},
     journal = {Russian journal of nonlinear dynamics},
     pages = {875--896},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_5_a1/}
}
TY  - JOUR
AU  - Yulia P. Emelianova
AU  - Alexander P. Kuznetsov
AU  - Erik Mosekilde
AU  - Jakob L. Laugesen
TI  - Dynamics of coupled nephrons and broadband synchronization
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 875
EP  - 896
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_5_a1/
LA  - ru
ID  - ND_2012_8_5_a1
ER  - 
%0 Journal Article
%A Yulia P. Emelianova
%A Alexander P. Kuznetsov
%A Erik Mosekilde
%A Jakob L. Laugesen
%T Dynamics of coupled nephrons and broadband synchronization
%J Russian journal of nonlinear dynamics
%D 2012
%P 875-896
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_5_a1/
%G ru
%F ND_2012_8_5_a1
Yulia P. Emelianova; Alexander P. Kuznetsov; Erik Mosekilde; Jakob L. Laugesen. Dynamics of coupled nephrons and broadband synchronization. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 875-896. http://geodesic.mathdoc.fr/item/ND_2012_8_5_a1/

[1] Glass L., Mackey M. C., From clocks to chaos: The rhythms of life, Princeton Univ. Press, Princeton–New York, 1988, 248 pp.

[2] Nikolis G., Prigozhin I., Poznanie slozhnogo: Vvedenie, Editorial URSS, M., 2003, 344 pp.

[3] Lemmer B., “Chronobiology, drug delivery, and chronotherapeutics”, Adv. Drug Deliv. Rev., 59 (2007), 828–851

[4] G. Leng (Ed.), Pulsatility in neuroendocrine systems, CRC Press, Boca Raton, FL, 1988, 261 pp.

[5] Bertram R., Previte J., Sherman A., Kinard T. A., Satin L. S., “The phantom burster model for pancreatic beta-cells”, Biophys. J., 79 (2000), 2880–2892

[6] Simonet J., Warden M., Brun E., “Locking and Arnold tongues in an infinite-dimensional system: The nuclear magnetic resonance laser with delayed feedback”, Phys. Rev. E, 50 (1994), 3383–3391

[7] Glova A. F., Lysikov A. Yu., “Sinkhronizatsiya trekh lazerov s opticheskoi svyazyu na prostranstvennom filtre”, Kvantovaya elektronika, 32:4 (2002), 315–318

[8] Napartovich A. P., Sukharev A. G., “Sinkhronizatsiya dvukhchastotnykh khaoticheskikh lazerov s odnonapravlennoi svyazyu”, Kvantovaya elektronika, 31:2 (2001), 147–153

[9] Vance W., Ross J., “A detailed study of a forced chemical oscillator: Arnol'd tongues and bifurcation sets”, J. Chem. Phys., 91 (1989), 7654–7670

[10] Taylor M. A., Kevrekidis I. G., “Couple, double, toil and trouble: A computer assisted study of two coupled CSTRs”, Chem. Eng. Sci., 48 (1993), 2129–2149

[11] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya. Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.

[12] Balanov A. G., Janson N. B., Postnov D. E., Sosnovtseva O. V., Synchronization: From simple to complex, Springer, Berlin, 2008, 449 pp.

[13] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh: Mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh, URSS, M., 2009, 320 pp.

[14] Rulkov N. F., Sushchik M. M., “Experimental observation of synchronized chaos with frequency ratio $1:2$”, Phys. Lett. A, 214 (1996), 145–150

[15] Ermentrout G. B., “Oscillator death in populations of «all to all» coupled nonlinear oscillators”, Phys. D, 41 (1990), 219–231

[16] Aronson D. G., Ermentrout G. B., Kopell N., “Amplitude response of coupled oscillators”, Phys. D, 41:3 (1990), 403–449

[17] Atay F. M., “Oscillator death in coupled functional differential equations near Hopf bifurcation”, J. Differential Equations, 221:1 (2006), 190–209

[18] Kuznetsov A. P., Paksyutov V. I., Roman Yu. P., “Osobennosti sinkhronizatsii v sisteme svyazannykh ostsillyatorov Van-der-Polya, neidentichnykh po upravlyayuschemu parametru”, Pisma v ZhTF, 33:15 (2007), 15–21

[19] Kuznetsov A. P., Roman J. P., “Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol–Duffing oscillators: Broadband synchronization”, Phys. D, 238:16 (2009), 1499–1506

[20] Emelyanova Yu. P., Kuznetsov A. P., “Sinkhronizatsiya svyazannykh avtogeneratorov Van-der-Polya i Kislova–Dmitrieva”, ZhTF, 81:4 (2011), 7–14

[21] Holstein-Rathlou N.-H., Sosnovtseva O. V., Pavlov A. N., Cupples W. A., Sørensen C. M., Marsh D. J., “Nephron blood flow dynamics measured by laser speckle contrast imaging”, Am. J. Physiol. Ren. Physiol., 300 (2011), F319–F329

[22] Holstein-Rathlou N.-H., “Synchronization of proximal intratubular pressure oscillations: evidence for interaction between nephrons”, Pflügers Arch., 408 (1987), 438–443

[23] Holstein-Rathlou N.-H., Marsh D. J., “A dynamic model of renal blood flow autoregulation”, Bull. Math. Biol., 56 (1994), 411–429

[24] Jacobsen J. C. B., Aalkjaer C., Matchkov V. V., Nilsson H., Freiberg J. J., Holstein-Rathlou N.-H., “Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 3483–3502

[25] Sosnovtseva O. V., Pavlov A. N., Mosekilde E., Holstein-Rathlou N.-H., “Bimodal oscillations in nephron autoregulation”, Phys. Rev. E, 66 (2002), 061909, 7 pp.

[26] Pavlov A. N., Sosnovtseva O. V., Pavlova O. N., Mosekilde E., Holstein-Rathlou N.-H., “Rhythmic components in renal autoregulation: nonlinear modulation phenomena”, Chaos Solitons Fractals, 41 (2009), 930–938

[27] Holstein-Rathlou N.-H., “Oscillations and chaos in renal blood flow control”, J. Am. Soc. Nephrol., 4 (1993), 1275–1287

[28] Barfred M., Mosekilde E., Holstein-Rathlou N.-H., “Bifurcation analysis of nephron pressure and flow regulation”, Chaos, 6:3 (1996), 280–287

[29] Laugesen J. L., Sosnovtseva O. V., Mosekilde E., Holstein-Rathlou N.-H., Marsh D. J., “Coupling-induced complexity in nephron models of renal blood flow regulation”, Am. J. Physiol. Regul. Integr. Comp. Physiol., 298 (2010), R997–R1006

[30] Postnov D. E., Sosnovtseva O. V., Mosekilde E., “Oscillator clustering in a resource distribution chain”, Chaos, 15 (2005), 013704, 12 pp.

[31] Laugesen J. L., Mosekilde E., Holstein-Rathlou N.-H., “Synchronization of period-doubling oscillations in vascular coupled nephrons”, Chaos, 21 (2011), 033128, 12 pp.

[32] Feldberg R., Colding-Jørgensen M., Holstein-Rathlou N.-H., “Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation”, Am. J. Physiol., 269 (1995), F581–F593

[33] Kuznetsov Y. A., Elements of applied bifurcation theory, Appl. Math. Sci., 112, 3rd ed., Springer, New York, 2004, 653 pp.

[34] Wagner A. J., Holstein-Rathlou N.-H., Marsh D. J., “Internephron coupling by conducted vasomotor responses in normotensive and spontaneously hypertensive rats”, Am. J. Physiol., 272 (1997), F372–F379

[35] Taylor M. A., Kevrekidis I. G., “Some common dynamic features of coupled reacting systems”, Phys. D, 51 (1991), 274–292