Landau--Hopf scenario in the ensemble of interacting oscillators
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 863-873.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions are discussed for which the ensemble of interacting oscillators may demonstrate Landau–Hopf scenario of successive birth of multi-frequency regimes. A model is proposed in the form of a network of five globally coupled oscillators, characterized by varying degree of excitement of individual oscillators. Illustrations are given for the birth of the tori of increasing dimension by successive quasi-periodic Hopf bifurcation.
Keywords: synchronization, quasi-periodic dynamics
Mots-clés : bifurcations, chaos.
@article{ND_2012_8_5_a0,
     author = {Alexander P. Kuznetsov and Sergey P. Kuznetsov and Ludmila V. Turukina and I. R. Sataev},
     title = {Landau--Hopf scenario in the ensemble of interacting oscillators},
     journal = {Russian journal of nonlinear dynamics},
     pages = {863--873},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_5_a0/}
}
TY  - JOUR
AU  - Alexander P. Kuznetsov
AU  - Sergey P. Kuznetsov
AU  - Ludmila V. Turukina
AU  - I. R. Sataev
TI  - Landau--Hopf scenario in the ensemble of interacting oscillators
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 863
EP  - 873
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_5_a0/
LA  - ru
ID  - ND_2012_8_5_a0
ER  - 
%0 Journal Article
%A Alexander P. Kuznetsov
%A Sergey P. Kuznetsov
%A Ludmila V. Turukina
%A I. R. Sataev
%T Landau--Hopf scenario in the ensemble of interacting oscillators
%J Russian journal of nonlinear dynamics
%D 2012
%P 863-873
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_5_a0/
%G ru
%F ND_2012_8_5_a0
Alexander P. Kuznetsov; Sergey P. Kuznetsov; Ludmila V. Turukina; I. R. Sataev. Landau--Hopf scenario in the ensemble of interacting oscillators. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 863-873. http://geodesic.mathdoc.fr/item/ND_2012_8_5_a0/

[1] Landau L. D., “K probleme turbulentnosti”, Dokl. AN SSSR, 44:8 (1944), 339–342

[2] Hopf E., “A mathematical example displaying features of turbulence”, Comm. Pure Appl. Math., 1 (1948), 303–322

[3] Ryuel D., Takens F., “O prirode turbulentnosti”, Strannye attraktory, Sb. st., eds. Ya. G. Sinai, L. P. Shilnikov, Mir, M., 1981, 117–151

[4] Berzhe P., Pomo I., Vidal K., Poryadok v khaose. O deterministskom podkhode k turbulentnosti, Mir, M., 1991, 368 pp.

[5] Denisova N. V., Kozlov V. V., “O khaotizatsii kolebanii svyazannykh mayatnikov”, Dokl. RAN, 367:2 (1999), 191–193

[6] Kozlov V. V., “Ansambli Gibbsa, ravnoraspredelennost energii simpaticheskikh ostsillyatorov i statisticheskie modeli termostata”, Nelineinaya dinamika, 3:2 (2007), 123–140

[7] Grebogi C., Ott E., Yorke J. A., “Attractors on an $N$-torus: Quasiperiodicity versus chaos”, Phys. D, 15:3 (1985), 354–373

[8] Battelino P. M., “Persistence of three-frequency quasiperiodicity under large perturbations”, Phys. Rev. A, 38:3 (1988), 1495–1502

[9] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya. Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.

[10] Anishchenko V., Astakhov S., Vadivasova T., “Phase dynamics of two coupled oscillators under external periodic force”, Europhys. Lett., 86 (2009), 30003

[11] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Regulyarnye i khaoticheskie avtokolebaniya: Sinkhronizatsiya i vliyanie fluktuatsii, Intellekt, Dolgoprudnyi, 2009, 312 pp.

[12] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya i mnogochastotnye kolebaniya v tsepochke fazovykh ostsillyatorov”, Nelineinaya dinamika, 6:4 (2010), 693–717

[13] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Vynuzhdennaya sinkhronizatsiya dvukh svyazannykh avtokolebatelnykh ostsillyatorov Van der Polya”, Nelineinaya dinamika, 7:3 (2011), 411–425

[14] Broer H., Simó C., Vitolo R., “Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems”, Regul. Chaotic Dyn., 16:1–2 (2011), 154–184

[15] Broer H., Simó C., Vitolo R., “The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol'd resonance web”, Bull. Belg. Math. Soc. Simon Stevin, 15:5 (2008), 769–787

[16] Gonchenko A. S., Gonchenko S. V., Shilnikov L. P., “K voprosu o stsenariyakh vozniknoveniya khaosa u trekhmernykh otobrazhenii”, Nelineinaya dinamika, 8:1 (2012), 3–28

[17] Rabinovich M. I., “Stokhasticheskie avtokolebaniya i turbulentnost”, UFN, 125 (1978), 123–168

[18] Monin A. S., “O prirode turbulentnosti”, UFN, 125 (1978), 97–122

[19] Kolesov A. Yu., Rozov N. Kh., Sadovnichii V. A., “Matematicheskie aspekty razvitiya turbulentnosti po Landau”, UMN, 63:2(380) (2008), 21–84

[20] Emelyanova Yu. P., Kuznetsov A. P., Tyuryukina L. V., “Dinamika trekh neidentichnykh po upravlyayuschim parametram svyazannykh ostsillyatorov van der Polya”, PND, 19:5 (2011), 76–90

[21] Popovych O., Maistrenko Yu., Tass P., “Phase chaos in coupled oscillators”, Phys. Rev. E, 71:6 (2005), 065201, 4 pp.