Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 735-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

We perform a numerical study of the motion of the rattleback, a rigid body with a convex surface on a rough horizontal plane in dependence on the parameters, applying the methods used previously for the treatment of dissipative dynamical systems, and adapted for the nonholonomic model. Charts of dynamical regimes are presented on the parameter plane of the total mechanical energy and the angle between the geometric and dynamic principal axes of the rigid body. Presence of characteristic structures in the parameter space, previously observed only for dissipative systems, is demonstrated. A method of calculating for the full spectrum of Lyapunov exponents is developed and implemented. It is shown that analysis of the Lyapunov exponents of chaotic regimes of the nonholonomic model reveals two classes, one of which is typical for relatively high energies, and the second for the relatively small energies. For the model reduced to a three-dimensional map, the first one corresponds to a strange attractor with one positive and two negative Lyapunov exponents, and the second to the chaotic dynamics of the quasi-conservative type, with close in magnitude positive and negative Lyapunov exponents, and the rest one about zero. The transition to chaos through a sequence of period-doubling bifurcations is illustrated, and the observed scaling corresponds to that intrinsic to the dissipative systems. A study of strange attractors is provided, in particularly, phase portraits are presented as well as the Lyapunov exponents, the Fourier spectra, the results of calculating the fractal dimensions.
Keywords: rattleback, rigid body dynamics, nonholonomic mechanics, strange attractor, Lyapunov exponents
Mots-clés : bifurcation, fractal dimension.
@article{ND_2012_8_4_a4,
     author = {Sergey P. Kuznetsov and Alexey Yu. Jalnine and Igor R. Sataev and Julia V. Sedova},
     title = {Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback},
     journal = {Russian journal of nonlinear dynamics},
     pages = {735--762},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_4_a4/}
}
TY  - JOUR
AU  - Sergey P. Kuznetsov
AU  - Alexey Yu. Jalnine
AU  - Igor R. Sataev
AU  - Julia V. Sedova
TI  - Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 735
EP  - 762
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_4_a4/
LA  - ru
ID  - ND_2012_8_4_a4
ER  - 
%0 Journal Article
%A Sergey P. Kuznetsov
%A Alexey Yu. Jalnine
%A Igor R. Sataev
%A Julia V. Sedova
%T Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback
%J Russian journal of nonlinear dynamics
%D 2012
%P 735-762
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_4_a4/
%G ru
%F ND_2012_8_4_a4
Sergey P. Kuznetsov; Alexey Yu. Jalnine; Igor R. Sataev; Julia V. Sedova. Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 735-762. http://geodesic.mathdoc.fr/item/ND_2012_8_4_a4/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989, 472 pp. | MR

[2] Gantmakher F. R., Lektsii po analiticheskoi mekhanike, Nauka, M., 1966, 300 pp.

[3] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[4] A. V. Borisov, I. S. Mamaev, Negolonomnye dinamicheskie sistemy: Integriruemost, khaos, strannye attraktory, Sb. st., Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 328 pp. | MR | Zbl

[5] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 117:4 (2003), 407–418

[6] Borisov A. V., Mamaev I. S., Kilin A. A., Izbrannye zadachi negolonomnoi mekhaniki, Preprint, http://ics.org.ru/doc?book=30&dir=r

[7] Gonchenko A. S., Gonchenko S. V., Shilnikov L. P., “K voprosu o stsenariyakh vozniknoveniya khaosa u trekhmernykh otobrazhenii”, Nelineinaya dinamika, 8:1 (2012), 3–28

[8] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “O nekotorykh novykh aspektakh khaoticheskoi dinamiki «keltskogo kamnya»”, Nelineinaya dinamika, 8:3 (2012), 507–518

[9] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii i voln, Nauka, M., 1984, 432 pp. | Zbl

[10] Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984, 528 pp.

[11] Shuster G., Determinirovannyi khaos, Mir, M., 1988, 253 pp. | MR | Zbl

[12] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2001, 296 pp.

[13] Kuznetsov A. P., Kuznetsov S. P., Sataev I. R., Chua L. O., “Multi-parameter criticality in Chua's circuit at period-doubling transition to chaos”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:1 (1996), 119–148 | DOI | MR | Zbl

[14] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya i mnogochastotnye kolebaniya v tsepochke fazovykh ostsillyatorov”, Nelineinaya dinamika, 6:4 (2010), 693–717

[15] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Na puti k mnogomernym toram”, PND, 18:6 (2010), 65–84 | Zbl

[16] Kalitkin H. H., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[17] Hénon M., “On the numerical computation of Poincaré maps”, Phys. D, 5:2–3 (1982), 412–414 | MR

[18] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. 1; 2”, Meccanica, 15 (1980), 9–30 | DOI

[19] Agekyan T. A., Osnovy teorii oshibok dlya astronomov i fizikov, Nauka, M., 1972, 172 pp.

[20] Gallas J. A. C., “Dissecting shrimps: results for some one-dimensional physical systems”, Phys. A, 202 (1994), 196–223 | DOI | MR

[21] Kuznetsov S. P., Hyperbolic chaos: A physicist's view, Springer, Berlin, 2012, 336 pp.

[22] Feigenbaum M., “Universalnost v povedenii nelineinykh sistem”, UFN, 141 (1983), 343–374 | DOI

[23] Kuznetsov S. P., Kuznetsov A. P., Sataev I. R., “Multiparameter critical situations, universality and scaling in two-dimensional period-doubling maps”, J. Stat. Phys., 121:5–6 (2005), 697–748 | DOI | MR | Zbl

[24] Reick C., “Universal corrections to parameter scaling in period-doubling systems: multiple scaling and crossover”, Phys. Rev. A, 45 (1992), 777–792 | DOI

[25] Raikhl L. E., Perekhod k khaosu v konservativnykh klassicheskikh i kvantovykh sistemakh, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2008, 756 pp.

[26] Yakobson M. V., “Invariantnye mery absolyutno nepreryvnye otnositelno $dx$ dlya odnoparametricheskikh semeistv odnomernykh otobrazhenii”, UMN, 35:4(214) (1980), 215–216 | MR | Zbl

[27] Benedicks M., Carleson L., “The dynamics of the Hénon map”, Ann. of Math. (2), 133:1 (1991), 73–169 | DOI | MR | Zbl

[28] Kaplan J. L., Yorke J. A., “A chaotic behavior of multi-dimensional differential equations”, Functional Differential Equations and Approximations of Fixed Points, Proc. of the Summer School and Conference held at the University of Bonn (Bonn, July 17–-22, 1978), Lecture Notes in Math., 730, eds. H.-O. Peitgen, H.-O. Walther, Springer, Berlin, 1979, 204–227 | DOI | MR

[29] Dzhenkins G., Vatts D., Spektralnyi analiz i ego prilozheniya, V 2-kh tt., Mir, M., 1971, 318 pp.; 1972, 142 с.

[30] Grassberger P., “Generalized dimensions of strange attractors”, Phys. Lett. A, 97 (1983), 227–230 | DOI | MR

[31] Grassberger P., Procaccia I., “Measuring the strangeness of strange attractors”, Phys. D, 9 (1983), 189–208 | DOI | MR | Zbl