The friction model in the case of a planar elliptic contact of a body with the supporting surface
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 705-712.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Contensou–Zhuravlev model [1, 2] is extended to include the case of planar elliptic contact of a convex body with a horizontal plane. The Padé approximations of expressions for determining the friction force and friction torque are constructed. The resulting model is applied to the numerical investigation of the dynamics of a homogeneous ellipsoid of revolution on a horizontal plane.
Keywords: dry friction
Mots-clés : Coulomb law.
@article{ND_2012_8_4_a2,
     author = {Mariya A. Munitsyna},
     title = {The friction model in the case of a planar elliptic contact of a body with the supporting surface},
     journal = {Russian journal of nonlinear dynamics},
     pages = {705--712},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_4_a2/}
}
TY  - JOUR
AU  - Mariya A. Munitsyna
TI  - The friction model in the case of a planar elliptic contact of a body with the supporting surface
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 705
EP  - 712
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_4_a2/
LA  - ru
ID  - ND_2012_8_4_a2
ER  - 
%0 Journal Article
%A Mariya A. Munitsyna
%T The friction model in the case of a planar elliptic contact of a body with the supporting surface
%J Russian journal of nonlinear dynamics
%D 2012
%P 705-712
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_4_a2/
%G ru
%F ND_2012_8_4_a2
Mariya A. Munitsyna. The friction model in the case of a planar elliptic contact of a body with the supporting surface. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 705-712. http://geodesic.mathdoc.fr/item/ND_2012_8_4_a2/

[1] Kontensu P., “Svyaz mezhdu treniem skolzheniya i treniem vercheniya i ee uchet v teorii volchka”, Problemy giroskopii, Sb. nauchn. st., ed. G. Tsigler, Mir, M., 1967, 60–77

[2] Zhuravlev V. F., “O modeli sukhogo treniya v zadache kacheniya tverdykh tel”, PMM, 62:5 (1998), 762–767 | MR

[3] Lure A. I., Teoriya uprugosti, Nauka, M., 1980, 513 pp. | MR

[4] Zhuravlev V. F., Kirienkov A. A., “O razlozheniyakh Pade v zadache o dvumernom kulonovskom trenii”, MTT, 2005, no. 2, 3–14 | MR

[5] Zhuravlev V. F., “Zakonomernosti treniya pri kombinatsii skolzheniya i vercheniya”, MTT, 2003, no. 4, 81–88

[6] Kireenkov A. A., “About the motion of the symmetric rigid solid alone the plane”, Proc. of the 8th Conf. on Dynamical Systems: Theory and Applications (December 12–15, 2005, Łódź, Poland), v. 1, ed. J. Awrejcewicz, Left Grupa, Łódź, 2005, 95–102

[7] Kosenko I. I., Aleksandrov E. B., “Realizatsiya modeli Kontensu–Erismana kasatelnykh sil v kontaktnoi zadache Gertsa”, Nelineinaya dinamika, 5:4 (2009), 499–517

[8] Karapetyan A. V., “Dvukhparametricheskaya model treniya i ee svoistva”, PMM, 73:5 (2009), 515–519 | MR

[9] Kirienkov A. A., “Trekhmernye modeli treniya”, Vestn. Nizhegorodsk. un-ta im. N. N. Lobachevskogo, 2011, no. 4(2), 174–176