Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2012_8_2_a5, author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev}, title = {How to control the {Chaplygin} sphere using rotors}, journal = {Russian journal of nonlinear dynamics}, pages = {289--307}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a5/} }
TY - JOUR AU - A. V. Borisov AU - A. A. Kilin AU - I. S. Mamaev TI - How to control the Chaplygin sphere using rotors JO - Russian journal of nonlinear dynamics PY - 2012 SP - 289 EP - 307 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2012_8_2_a5/ LA - ru ID - ND_2012_8_2_a5 ER -
A. V. Borisov; A. A. Kilin; I. S. Mamaev. How to control the Chaplygin sphere using rotors. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 289-307. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a5/
[1] Bobylev D. K., “O share s giroskopom vnutri, katyaschemsya po gorizontalnoi ploskosti bez skolzheniya”, Matem. sb., 16:3 (1982), 544–581
[2] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | MR | Zbl
[3] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 384 pp. | MR | Zbl
[4] Borisov A. V., Mamaev I. S., “Kachenie neodnorodnogo shara po sfere bez skolzheniya i vercheniya”, Nelineinaya dinamika, 2:4 (2006), 445–452
[5] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280
[6] Zhukovskii N. E., “O giroskopicheskom share D. K. Bobyleva”: N. E. Zhukovskii, Sobr. soch., v. 1, Gostekhizdat, M.–L., 1948, 275–289
[7] Markeev A. P., “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, MTT, 21:1 (1986), 64–65
[8] Martynenko Yu. G., “Upravlenie dvizheniem mobilnykh kolesnykh robotov”, Fundament. i prikl. matem., 11:8 (2005), 29–80
[9] Moskvin A. Yu., “Shar Chaplygina s girostatom: Osobye resheniya”, Nelineinaya dinamika, 5:3 (2009), 345–356
[10] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. ped. in-ta im. Libknekhta. Ser. fiz.-matem., 3:2 (1938), 83–94
[11] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 76–101
[12] Agrachev A. A., Sachkov Yu. L., “An intrinsic approach to the control of rolling bodies”, Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix, AZ, Dec 1999), v. 1, 431–435
[13] Alouges F., Chitour Y., Long R., A motion planning algorithm for the rolling-body problem, IEEE Transactions on Robotics, 2010, 12 pp. | Zbl
[14] Alves J., Dias J., “Design and control of a spherical mobile robot”, Journal of Systems and Control Engineering, 217 (2003), 457–467
[15] Armour R. H., Vincent J. F. V., “Rolling in nature and robotics: A review”, Journal of Bionic Engineering, 3:4 (2006), 195–208 | DOI
[16] Bonnard B., “Contrôlabilité des systèmes nonlinéaires”, C. R. Acad. Sci. Paris, Sér. 1, 292 (1981), 535–537 | MR | Zbl
[17] Borisov A. V., Mamaev I. S., “The rolling of rigid body on a plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:1 (2002), 177–200 | DOI | MR | Zbl
[18] Borisov A. V., Mamaev I. S., Kilin A. A., “Rolling of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–220 | DOI | MR
[19] Camicia C., Conticelli F., Bicchi A., “Nonholonimic kinematics and dynamics of the Sphericle”, Proc. of the 2000 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems, 2000, 805–810
[20] Campion G., Chung W., “Wheeled robots”: B. Siciliano, O. Khatib, Handbook of Robotics, Springer, Berlin, 2008, 391–410 | DOI
[21] Chow W. L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | DOI | MR
[22] Chung W., Nonholonomic manipulators, Springer Tracts in Advanced Robotics, 13, Springer, Berlin, 2004, 114 pp.
[23] Crossley V. A., A literature review on the design of spherical rolling robots, Pittsburgh, PA, 2006, 6 pp.
[24] Crouch P. E., “Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models”, IEEE Trans. Autom. Contr., AC-29:4 (1984), 321–331 | DOI | Zbl
[25] Duistermaat J. J., Chaplygin's sphere, [math.DS] 1 Sep 2004, arXiv: 0409019v1
[26] Goncharenko I., Svinin M., Hosoe S., “Dynamic model, haptic solution, and human-inspired motion planning for rolling-based manipulation”, Journal of Computing and Information Science in Engineering, 9:1 (2009), 011004, 10 pp. | DOI
[27] Johnson B. D., “The nonholonomy of the rolling sphere”, Amer. Math. Monthly, 114:6 (2007), 500–508 | MR | Zbl
[28] Joshi V. A., Banavar R. N., “Motion analysis of a spherical mobile robot”, Robotica, 27:3 (2009), 343–353 | DOI
[29] Joshi V. A., Banavar R. N., Hippalgaonkar R., “Design and analysis of a spherical mobile robot”, Mech. Mach. Theory, 45 (2010), 130–136 | DOI | Zbl
[30] Karimpour H., Keshmiri M., Mahzoon M., “Stabilization of an autonomous rolling sphere navigating in a labyrinth arena: A geometric mechanics perspective”, Systems Control Lett., 61 (2012), 495–505 | DOI
[31] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl
[32] Koiller J., Ehlers K. M., “Rubber Rolling over a Sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR | Zbl
[33] Koshiyama A., Yamafuji K., “Design and control of an all-direction steering type mobile robot”, Int. J. Robot. Res., 12:5 (1993), 411–419 | DOI
[34] Levi M., “Geometric phases in the motion of rigid bodies”, Arch. Ration. Mech. Anal., 122 (1993), 213–229 | DOI | MR | Zbl
[35] Lewis A. D., Ostrowski J. P., Burdickz J. W., Murray R. M., Nonholonomic mechanics and locomotion: the Snakeboard example, Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994, 16 pp.
[36] Li Z., Canny J., “Motion of two rigid bodies with rolling constraint”, Robotics and Automation, 6:1 (1990), 62–72 | DOI
[37] Michaud F., Caron S., “Roball, the rolling robot”, Autonomous Robots, 12 (2002), 211–222 | DOI | Zbl
[38] Marigo A., Bicchi A., “Rolling bodies with regular surface: Controllability theory and applications”, IEEE Trans. on Automatic Control, 45:9 (2000), 1586–1599 | DOI | MR | Zbl
[39] Mukherjee R., Minor M. A., Pukrushpan J. T., “Simple motion planning strategies for Spherobot: A spherical mobile robot”, Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix, AZ, Dec 1999), v. 3, 2132–2137
[40] Mukherjee R., Minor M. A., Pukrushpan J. T., “Motion planning for a spherical mobile robot: Revisiting the classical ball-plate problem”, J. Dyn. Systems, Measurement, and Control, 124 (2002), 502–511 | DOI
[41] Nakashima A., Nagase K., Hayakawa Y., “Control of a sphere rolling on a plane with constrained rolling motion”, Proc. of the 44th IEEE Conf. on Decision and Control, and the European Control Conference, 2005, 1445–1452 | DOI
[42] Ostrowski J. P., Desai J. P., Kumar V., “Optimal Gait Selection for Nonholonomic Locomotion Systems”, The International Journal of Robotics Research, 19:3 (2000), 225–237 | DOI
[43] Reza Moghadasi S., “Rolling of a body on a plane or a sphere: A geometric point of view”, Bull. Austral. Math. Soc., 70 (2004), 245–256 | DOI | MR | Zbl
[44] Sang S., Zhao J., Wu H., Chen S., An Q., “Modeling and simulation of a spherical mobile robot”, Computer Science and Information Systems, 7:1 (2010), 51–62 | DOI
[45] Shen J., Schneider D. A., Bloch A. M., “Controllability and motion planning of multibody systems with nonholonomic constraints”, Proc. of the 42nd IEEE Conf. on Decision and Control (Maui, Hawaii USA, Dec 2003), v. 53, 4369–4374
[46] Shen J., Schneider D. A., Bloch A. M., “Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top”, Internat. J. Robust Nonlinear Control, 18:9 (2008), 905–945 | DOI | MR
[47] Sugiyama Y., Hirai S., “Crawling and jumping by a deformable robot”, Int. J. Robot. Res., 25 (2006), 603–620 | DOI
[48] Suomela J., Ylikorpi T., “Ball-shaped robots: An historical overview and recent developments at TKK”, Field and Service Robotics, 25 (2006), 343–354 | DOI
[49] Tomik F., Nudehi S., Flynn L. L., Mukherjee R., “Design, fabrication and control of spherobot: A spherical mobile robot”, J. Intell. Robot. Syst., 2012 | DOI
[50] Wilson J. L., Mazzoleni A. P., DeJarnette F. R., Antol J., Hajos G. A., Strickland C. V., “Design, analysis, and testing of Mars tumbleweed rover concepts”, Journal of spacecraft and rockets, 45:2 (2008), 370–382 | DOI
[51] Yoon J.-C., Ahn S.-S., Lee Y.-J., “Spherical robot with new type of two-pendulum driving mechanism”, Proc. of the 15th IEEE Internat. Conf. on Intelligent Engineering Systems, 2011, 275–279 | DOI
[52] Zhan Q., Cai Y., Yan C., “Design, analysis and experiments of an omni-directional spherical robot”, IEEE Internat. Conf. on Robotics and Automation, Shanghai, China, May 2011, 4921-4926