Analysis of discontinuous bifurcations in nonsmooth dynamical systems
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 231-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical systems with discontinuous right-hand sides are considered. It is well known that the trajectories of such systems are nonsmooth and the fundamental solution matrix is discontinuous. This implies the presence of the so-called discontinuous bifurcations, resulting in a discontinuous change in the multipliers. A method of stepwise smoothing is proposed allowing the reduction of discontinuous bifurcations to a sequence of typical bifurcations: saddle-node, period doubling and Hopf bifurcations. The results obtained are applied to the analysis of the well-known system with friction a block on the moving belt, which serves as a popular model for the description of selfexcited frictional oscillations of a brake shoe. Numerical techniques used in previous investigations of this model did not allow general conclusions to be drawn as to the presence of self-excited oscillations. The new method makes it possible to carry out a complete qualitative investigation of possible types of discontinuous bifurcations in this system and to point out the regions of parameters which correspond to stable periodic regimes.
Keywords: non-smooth dynamical systems, discontinuous bifurcations, oscillator with dry friction.
@article{ND_2012_8_2_a2,
     author = {A. P. Ivanov},
     title = {Analysis of discontinuous bifurcations in nonsmooth dynamical systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {231--247},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a2/}
}
TY  - JOUR
AU  - A. P. Ivanov
TI  - Analysis of discontinuous bifurcations in nonsmooth dynamical systems
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 231
EP  - 247
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_2_a2/
LA  - ru
ID  - ND_2012_8_2_a2
ER  - 
%0 Journal Article
%A A. P. Ivanov
%T Analysis of discontinuous bifurcations in nonsmooth dynamical systems
%J Russian journal of nonlinear dynamics
%D 2012
%P 231-247
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_2_a2/
%G ru
%F ND_2012_8_2_a2
A. P. Ivanov. Analysis of discontinuous bifurcations in nonsmooth dynamical systems. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 231-247. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a2/

[1] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[2] di Bernardo M., Budd C., Champneys A. R., Kowalczyk P., Piece-wise smooth dynamical systems, Appl. Math. Sci., 163, Springer, London, 2008, 483 pp.

[3] Aizerman M. A., Gantmakher F. R., “Ob ustoichivosti periodicheskikh dvizhenii”, PMM, 22:6 (1958), 750–758 | MR

[4] Guckenheimer J., Holmes Ph., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci., 42, 6th ed., Springer, New York, 1997, 459 pp. ; Gukenkheimer Dzh., Kholms P., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Inst. kompyutern. issled., M.–Izhevsk, 2002, 560 pp. | MR

[5] Ivanov A. P., “Analiticheskie metody v teorii vibroudarnykh sistem”, PMM, 57:2 (1993), 5–21 | MR | Zbl

[6] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1956, 915 pp.

[7] Ivanov A. P., Osnovy teorii sistem s treniem, NITs «Regulyarnaya i khaoticheskaya dinamika», Inst. kompyutern. issled., M.–Izhevsk, 2011, 304 pp.

[8] di Bernardo M., Budd Ch. J., Champneys A. R., Kowalczyk P., Nordmark A. B., Olivar Tost G., Piiroinen P. T., “Bifurcations in nonsmooth dynamical systems”, SIAM Rev., 50:4 (2008), 629–701 | DOI | MR | Zbl

[9] di Bernardo M., Budd C. J., Champneys A. R., “Grazing bifurcations in $n$-dimensional piece-smooth dynamical systems”, Phys. D, 160 (2001), 222–254 | DOI | MR | Zbl

[10] di Bernardo M., Kowalczyk P., Nordmark A., “Bifurcation of dynamical systems with sliding: Derivation of normal-form mappings”, Phys. D, 170 (2002), 175–205 | DOI | MR | Zbl

[11] Khairer E., Nersett S., Vinner G., Reshenie obyknovennykh differentsialnykh uravnenii: Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[12] Teifel A., Shtaindl A., Troger Kh., “Klassifikatsiya negladkikh bifurkatsii dlya ostsillyatora s treniem”, Problemy analiticheskoi mekhaniki i teorii ustoichivosti, Sb. nauchn. st., posv. pamyati akad. V. V. Rumyantseva, IPU RAN, M., 2009, 161–175

[13] Yoshitake Y., Sueoka A., “Quenching of self-excited vibrations by impact damper”, Applied nonlinear dynamics and chaos of mechanical systems with discontinuities, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 28, eds. M. Wiercigroch, B. de Kraker, World Sci. Publ., River Edge, NJ, 2000, 155–176