Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2012_8_2_a11, author = {V. B. Titov}, title = {Some periodic orbits of general three body problem with vanishing angular momentum}, journal = {Russian journal of nonlinear dynamics}, pages = {377--389}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a11/} }
TY - JOUR AU - V. B. Titov TI - Some periodic orbits of general three body problem with vanishing angular momentum JO - Russian journal of nonlinear dynamics PY - 2012 SP - 377 EP - 389 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2012_8_2_a11/ LA - ru ID - ND_2012_8_2_a11 ER -
V. B. Titov. Some periodic orbits of general three body problem with vanishing angular momentum. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 377-389. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a11/
[1] Barutello V., Ferrario D., Terracini S., “Symmetry groups of the planar $3$-body problem and action-minimizing trajectories”, Arch. Ration. Mech. Anal., 190:2 (2008), 189–226 | DOI | MR | Zbl
[2] Broucke R., Lass H., “A note on relative motion in the general three-body problem”, Celestial Mech., 8 (1973), 5–10 | DOI | MR | Zbl
[3] Broucke R., Boggs D., “Periodic general orbits in three-body problem”, Celestial Mech., 11 (1975), 13–38 | DOI | MR | Zbl
[4] Chenciner A., Montgomery R., “A remarkable periodic solution of the three-body problem in the case of equal masses”, Ann. of Math. (2), 152:2 (2000), 881–901 ; Современные проблемы хаоса и нелинейности, сб. ст., ред. К. Симо, С. Смейл, А. Шенсине и др., НИЦ «РХД», Институт компьютерных исследований, М.–Ижевск, 2002, 183–205 | DOI | MR | Zbl
[5] Hsiang W.-Y., Straume E., Geometric study of the three-body problem: 1, PAM-620 Center for Pure and Applied Math. preprint series, Univ. of California, Berkeley, 1994 | MR
[6] Hsiang W.-Y., Straume E., “Global geometry of $3$-body trajectories with vanishing angular momentum: 1”, Chinese Ann. Math. Ser. B, 29 (2008), 1–54 | DOI | MR | Zbl
[7] Hsiang W.-Y., Straume E., “Kinematic geometry of triangles and the stude of the three-body problem”, Lobachevskii J. Math., 25 (2007), 9–130 | MR | Zbl
[8] Moeckel R., “Some qualitative features of the three-body problem”, Contemp. Math., 81 (1988), 1–21 ; Задача Кеплера: Столкновения. Регуляризация, сб. ст., НИЦ «РХД», Институт компьютерных исследований, М.–Ижевск, 2006, 264–286 | DOI | MR
[9] Moore C., “Braids in classical dynamics”, Phys. Rev. Lett., 70 (1993), 3675–3679 ; Относительные равновесия: Периодические решения, сб. ст., НИЦ «РХД», Институт компьютерных исследований, М.–Ижевск, 2006, 163–174 | DOI | MR | Zbl
[10] Montgomery R., “The geometric phase of the three-body problem”, Nonlinearity, 9 (1996), 1341–1360 | DOI | MR | Zbl
[11] Montgomery R., “A new solution to the three-body problem”, Notices Amer. Math. Soc., 48:5 (2001), 471–481 | MR | Zbl
[12] Montgomery R., “Infinitely many syzygies”, Arch. Ration. Mech. Anal., 162:4 (2002), 311–330 ; Различные аспекты задачи $N$ тел, сб. ст., ред. А. В. Борисов, А. Шенсине, НИЦ «РХД», Институт компьютерных исследований, М.–Ижевск, 2011, 7–64 | DOI | MR
[13] Palais R. S., “The principle of symmetric criricality”, Comm. Math. Phys., 69 (1979), 19–30 | DOI | MR | Zbl
[14] Poincaré H., “Sur les solutions périodiques et le principle de moindre action”, C. R. Acad. Sci., 123 (1896), 915–918 ; Относительные равновесия: Периодические решения, сб. ст., НИЦ «РХД», Институт компьютерных исследований, М.–Ижевск, 2006, 159–162 | Zbl
[15] Titov V., “Symmetrical periodic orbits in the three body problem – the variational approach”, Few-Body Problem: Theory and Computer Simulation (Turku, 2005), ed. Ch. Flynn, Turku, Univ. of Turku, 2006, 9–15
[16] Vanderbei R., “New orbits for the $n$-body problem”, Ann. New York Acad. Sci., 1017 (2004), 422–433 | DOI
[17] Subbotin M. F., Vvedenie v teoreticheskuyu astronomiyu, Nauka, M., 1968, 800 pp.