The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 113-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the motion of axisymmetric vortex rings in an ideal incompressible fluid. Using the topological approach, we present a method for complete qualitative analysis of the dynamics of a system of two vortex rings. In particular, we completely solve the problem of describing the conditions for the onset of leapfrogging motion of vortex rings. In addition, for the system of two vortex rings we find new families of motions in which the mutual distances remain finite (we call them pseudo-leapfrogging). We also find solutions for the problem of three vortex rings, which describe both the regular and chaotic leapfrogging motion of vortex rings.
Keywords: ideal fluid, vortex ring, leapfrogging motion of vortex rings, periodic solution, integrability, chaotic dynamics.
Mots-clés : bifurcation complex
@article{ND_2012_8_1_a7,
     author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {The dynamics of vortex rings: {Leapfrogging,} choreographies and the stability problem},
     journal = {Russian journal of nonlinear dynamics},
     pages = {113--147},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_1_a7/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 113
EP  - 147
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_1_a7/
LA  - ru
ID  - ND_2012_8_1_a7
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem
%J Russian journal of nonlinear dynamics
%D 2012
%P 113-147
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_1_a7/
%G ru
%F ND_2012_8_1_a7
A. V. Borisov; A. A. Kilin; I. S. Mamaev. The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 113-147. http://geodesic.mathdoc.fr/item/ND_2012_8_1_a7/

[1] Alekseev V. M., “Obobschennaya prostranstvennaya zadacha dvukh nepodvizhnykh tsentrov: Klassifikatsiya dvizhenii”, Byulleten ITA, 10:4(117) (1965), 241–271 | MR

[2] Akhmetov D. G., Vikhrevye koltsa, Akademicheskoe izd-vo «Geo», Novosibirsk, 2007, 151 pp. | Zbl

[3] Bagrets A. A, Bagrets D. A., “Neintegriruemost gamiltonovykh sistem vikhrevoi dinamiki”, Regul. i khaotich. dinam., 2:1 (1997), 36–43 | MR

[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | MR | Zbl

[5] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., UdGU, Izhevsk, 1999, 443; 448 pp.

[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Absolyutnye i otnositelnye khoreografii v zadache o dvizhenii tochechnykh vikhrei na ploskosti”, Dokl. RAN, 400:4 (2005), 457–462 | MR

[7] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, IKI, M.–Izhevsk, 2005, 576 pp. | MR

[8] Boyarintsev V. I., Levchenko E. S., Savin A. S., “O dvizhenii dvukh vikhrevykh kolets”, MZhG, 1985, no. 5, 176–177 | Zbl

[9] Brutyan M. A., Krapivskii P. L., “Dvizhenie sistemy vikhrevykh kolets v neszhimaemoi zhidkosti”, PMM, 48:3 (1984), 503–506 | MR

[10] Betchelor Dzh., Vvedenie v gidrodinamiku zhidkosti, Mir, M., 1973, 758 pp.

[11] Vasilev N. S., “O dvizhenii beskonechnogo ryada krugovykh kolets odinakovogo radiusa, imeyuschikh obschuyu os”, Zapiski fiz.-mat. fak-ta Imp. Novorossiisk. un-ta, 10 (1914), 1–44

[12] Vasilev N. S., “Privedenie uravnenii dvizheniya krugovykh vikhrevykh kolets, imeyuschikh obschuyu os, k kanonicheskoi forme”, Zapiski mat. otd. Novorossiisk. obsch-va estestvozn., 21 (1913), 1–12

[13] Grinchenko V. T., Meleshko V. V., Gurzhii A. A., Kheist G. Ya. F., Eisenga A. G. M., “Dva podkhoda k analizu koaksialnogo vzaimodeistviya vikhrevykh kolets”, Prikl. gidromekhan., 2:3 (2000), 40–52 | Zbl

[14] Gurzhii A. A., Konstantinov M. Yu., Meleshko V. V., “Vzaimodeistvie koaksialnykh vikhrevykh kolets v idealnoi zhidkosti”, MZhG, 1988, no. 2, 78–84 | MR

[15] Novikov E. A., “Obobschennaya dinamika trekhmernykh vikhrevykh osobennostei (vortonov)”, ZhETF, 84:3 (1983), 975–981

[16] Chaplygin S. A., “Zametki o zhizni i trudakh Gelmgoltsa”: G. Gelmgolts, Dva issledovaniya po gidrodinamike: I. O vikhrevom dvizhenii; II. O preryvnom dvizhenii zhidkosti, M., 1902, 75–99; Гельмгольц Г., Основы вихревой теории, Инст. компьютерн. исслед., М.–Ижевск, 2002, 57–73

[17] Cheremnykh O. K., “O dvizhenii vikhrevykh kolets v neszhimaemoi srede”, Nelineinaya dinamika, 4:2 (2008), 417–428

[18] Sharle K. L., Nebesnaya mekhanika, Nauka, M., 1966, 627 pp. | MR

[19] Bagrets A. A., Bagrets D. A., “Nonintegrability of two problems in vortex dynamics”, Chaos, 7:3 (1997), 368–375 | DOI | MR | Zbl

[20] Blackmore D., Brons M., Goullet A., “A coaxial vortex ring model for vortex breakdown”, Phys. D, 237 (2008), 2817–2844 | DOI | MR | Zbl

[21] Blackmore D., Champanerkar J., Wang Ch., “A generalized Poincaré\f Birkhoff theorem with applications to coaxial vortex ring motion”, Discrete Contin. Dyn. Syst. Ser. B, 5:1 (2005), 15–33 | MR | Zbl

[22] Blackmore D., Knio O., “Transition from quasiperiodicity to chaos for three coaxial vortex rings”, ZAMM Z. Angew. Math. Mech., 80 (2000), 173–176 | DOI

[23] Blackmore D., Knio O., “KAM theory analysis of the dynamics of three coaxial vortex rings”, Phys. D, 140 (2000), 321–348 | DOI | MR | Zbl

[24] Borisov A. V., Kilin A. A., Mamaev I. S., “Reduction and chaotic behavior of point vortices on a plane and a sphere”, Discrete Contin. Dyn. Syst., 2005, suppl., 100–109 | MR | Zbl

[25] Borisov A. V., Mamaev I. S., “Isomorphisms of geodesic flows on quadrics”, Regul. Chaotic Dyn., 14:4–5 (2009), 455–465 | DOI | MR | Zbl

[26] Chenciner A., Montgomery R., “A remarkable periodic solution of the three body problem in the case of equal masses”, Ann. of Math. (2), 152 (2000), 881–901 ; К. Симо, С. Смейл, А. Шенсине и др., Современные проблемы хаоса и нелинейности, Сб. ст., НИЦ «РХД», Инст. компьютерн. исслед., М.–Ижевск, 2002, 179–201 | DOI | MR | Zbl

[27] Dyson F. W., “The potential of an anchor ring”, Philos. Trans. Roy. Soc. London Ser. A, 184 (1893), 43–95 | DOI

[28] Dyson F. W., “The potential of an anchor ring: P. 2”, Philos. Trans. Roy. Soc. London Ser. A, 184 (1893), 1041–1106 | DOI

[29] Fraenkel L. E., “On steady vortex rings of small cross-section in a ideal fluid”, Proc. R. Soc. London Ser. A, 316 (1970), 29–62 | DOI | Zbl

[30] Fraenkel L. E., “Examples of steady vortex rings of small cross-section in an ideal fluid”, J. Fluid Mech., 51 (1972), 119–135 | DOI | Zbl

[31] Fraenkel L. E., Berger M. S., “A global theory of steady vortex rings in an ideal fluid”, Acta Math., 132 (1974), 13–51 | DOI | MR | Zbl

[32] Gröbli W., “Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden”, Vierteljschr. Naturf. Ges. Zürich, 22 (1877), 37–82, 129–168

[33] Helmholtz H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 ; Gelmgolts G., “Ob integralakh uravnenii gidrodinamiki, sootvetstvuyuschikh vikhrevym dvizheniyam”, Nelineinaya dinamika, 2:4 (2006), 473–507 | DOI | Zbl

[34] Hicks W. M., “On the steady motion of a hollow vortex”, Proc. R. Soc. London, 35 (1883), 304–308 | DOI

[35] Hicks W. M., “Researches on the theory of vortex rings: P. 2”, Philos. Trans. Roy. Soc. London Ser. A, 176 (1885), 725–780 | DOI

[36] Hicks W. M., “On the mutual threading of vortex rings”, Proc. R. Soc. London Ser. A, 102 (1922), 111–113 | DOI

[37] Hicks W. M., “Researches in vortex motion: P. 3. On spiral or gyrostatic vortex aggregates”, Philos. Trans. Roy. Soc. London Ser. A, 192 (1899), 33–99 | DOI

[38] Hill M. J. M., “On a spherical vortex”, Philos. Trans. Roy. Soc. London Ser. A, 185 (1894), 213–245 | DOI

[39] Konstantinov M., “Chaotic phenomena in the interaction of vortex rings”, Phys. Fluids, 6:5 (1994), 1752–1767 | DOI | MR | Zbl

[40] Lamb H., Hydrodynamics, 6th ed., Cambridge Univ. Press, Cambridge, 1932, 768 pp. ; Lamb G., Gidrodinamika, Gostekhizdat, M.–L., 1947, 928 pp. | MR | Zbl

[41] Levy H., Forsdyke A. G., “The stability of an infinite system of circular vortices”, Proc. R. Soc. London Ser. A, 114 (1927), 594–604 | DOI | Zbl

[42] Levy H., Forsdyke A. G., “The vibrations of an infinite system of vortex rings”, Proc. R. Soc. London Ser. A, 116 (1927), 352–379 | DOI | Zbl

[43] Maxwell J. C., “Letter to William Thomson, 6 October 1868”, The scientific letters and papers of James Clerk Maxwell, v. 2, ed. P. M. Harman, Cambridge Univ. Press, Cambridge, 1990, 446–448 ; “Pismo Dzh. Maksvella U. Tomsonu ot 6 oktyabrya 1868 goda”, Nelineinaya dinamika, 8:1 (2012), 161–165 | MR | MR

[44] Maxwell J. C., A treatise on electricity and magnetism, In 2 vols., Clarendon, Oxford, 1873, 464; 456 pp.

[45] Maxworthy T., “Some experimental studies of vortex rings”, J. Fluid Mech., 81 (1977), 465–495 | DOI

[46] Meleshko V. V., “Coaxial axisymmetric vortex rings: 150 years after Helmholtz”, Theor. Comput. Fluid Dynam., 24 (2010), 403–431 | DOI | Zbl

[47] Moore C., “Braids in classical gravity”, Phys. Rev. Lett., 70 (1993), 3675–3679 | DOI | MR | Zbl

[48] Moore D. W., Saffman P. G., “A note on the stability of a vortex ring of small cross-section”, Proc. R. Soc. London Ser. A, 338:1615 (1974), 535–537 | DOI

[49] Roberts P. H., Donnelly R. J., “Dynamics of vortex rings”, Phys. Lett. A, 31 (1970), 137–138 | DOI

[50] Novikov E. A., “Hamiltonian description of axisymmetric vortex flows and the system of vortex rings”, Phys. Fluids, 28:9 (1985), 2921–2922 | DOI | Zbl

[51] Pocklington H. C., “The complete system of the periods of a hollow vortex ring”, Philos. Trans. Roy. Soc. London Ser. A, 186 (1895), 603–619 | DOI

[52] Saffman P. G., “The velocity of viscous vortex rings”, Stud. Appl. Math., 49 (1970), 371–380 | Zbl

[53] Saffman P. G., Vortex dynamics, Cambridge Univ. Press, Cambridge, 1992, 311 pp. ; Seffmen F. Dzh., Dinamika vikhrei, Nauchnyi mir, M., 2000, 376 pp. | MR | Zbl

[54] Shariff K., “Vortex rings”, Annu. Rev. Fluid Mech., 24 (1992), 235–279 | DOI | MR | Zbl

[55] Simó C., “Dynamical properties of the figure eight solution of the three-body problem”, Celestial mechanics (Evanston, IL, 1999), Contemp. Math., 292, AMS, Providence, RI, 2002, 209–228 | DOI | MR | Zbl

[56] Simó C., Stuchi T. J., “Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem”, Phys. D, 140:1–2 (2000), 1–32 | DOI | MR | Zbl

[57] Llewellyn Smith S. G., Hattori Y., “Axisymmetric magnetic vortices with swirl”, Commun. Nonlinear Sci. Numer. Simul., 2012 (to appear)

[58] Thomson J. J., “On the vibrations of a vortex ring, and the action upon each other of two vortices in a perfect fluid”, Philos. Trans. Roy. Soc. London, 173 (1882), 493–521 | DOI

[59] Thomson W., “On vortex atoms”, Philos. Mag. Ser. 4, 34 (1867), 15–24