Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2012_8_1_a7, author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev}, title = {The dynamics of vortex rings: {Leapfrogging,} choreographies and the stability problem}, journal = {Russian journal of nonlinear dynamics}, pages = {113--147}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2012_8_1_a7/} }
TY - JOUR AU - A. V. Borisov AU - A. A. Kilin AU - I. S. Mamaev TI - The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem JO - Russian journal of nonlinear dynamics PY - 2012 SP - 113 EP - 147 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2012_8_1_a7/ LA - ru ID - ND_2012_8_1_a7 ER -
%0 Journal Article %A A. V. Borisov %A A. A. Kilin %A I. S. Mamaev %T The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem %J Russian journal of nonlinear dynamics %D 2012 %P 113-147 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2012_8_1_a7/ %G ru %F ND_2012_8_1_a7
A. V. Borisov; A. A. Kilin; I. S. Mamaev. The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 113-147. http://geodesic.mathdoc.fr/item/ND_2012_8_1_a7/
[1] Alekseev V. M., “Obobschennaya prostranstvennaya zadacha dvukh nepodvizhnykh tsentrov: Klassifikatsiya dvizhenii”, Byulleten ITA, 10:4(117) (1965), 241–271 | MR
[2] Akhmetov D. G., Vikhrevye koltsa, Akademicheskoe izd-vo «Geo», Novosibirsk, 2007, 151 pp. | Zbl
[3] Bagrets A. A, Bagrets D. A., “Neintegriruemost gamiltonovykh sistem vikhrevoi dinamiki”, Regul. i khaotich. dinam., 2:1 (1997), 36–43 | MR
[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | MR | Zbl
[5] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., UdGU, Izhevsk, 1999, 443; 448 pp.
[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Absolyutnye i otnositelnye khoreografii v zadache o dvizhenii tochechnykh vikhrei na ploskosti”, Dokl. RAN, 400:4 (2005), 457–462 | MR
[7] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, IKI, M.–Izhevsk, 2005, 576 pp. | MR
[8] Boyarintsev V. I., Levchenko E. S., Savin A. S., “O dvizhenii dvukh vikhrevykh kolets”, MZhG, 1985, no. 5, 176–177 | Zbl
[9] Brutyan M. A., Krapivskii P. L., “Dvizhenie sistemy vikhrevykh kolets v neszhimaemoi zhidkosti”, PMM, 48:3 (1984), 503–506 | MR
[10] Betchelor Dzh., Vvedenie v gidrodinamiku zhidkosti, Mir, M., 1973, 758 pp.
[11] Vasilev N. S., “O dvizhenii beskonechnogo ryada krugovykh kolets odinakovogo radiusa, imeyuschikh obschuyu os”, Zapiski fiz.-mat. fak-ta Imp. Novorossiisk. un-ta, 10 (1914), 1–44
[12] Vasilev N. S., “Privedenie uravnenii dvizheniya krugovykh vikhrevykh kolets, imeyuschikh obschuyu os, k kanonicheskoi forme”, Zapiski mat. otd. Novorossiisk. obsch-va estestvozn., 21 (1913), 1–12
[13] Grinchenko V. T., Meleshko V. V., Gurzhii A. A., Kheist G. Ya. F., Eisenga A. G. M., “Dva podkhoda k analizu koaksialnogo vzaimodeistviya vikhrevykh kolets”, Prikl. gidromekhan., 2:3 (2000), 40–52 | Zbl
[14] Gurzhii A. A., Konstantinov M. Yu., Meleshko V. V., “Vzaimodeistvie koaksialnykh vikhrevykh kolets v idealnoi zhidkosti”, MZhG, 1988, no. 2, 78–84 | MR
[15] Novikov E. A., “Obobschennaya dinamika trekhmernykh vikhrevykh osobennostei (vortonov)”, ZhETF, 84:3 (1983), 975–981
[16] Chaplygin S. A., “Zametki o zhizni i trudakh Gelmgoltsa”: G. Gelmgolts, Dva issledovaniya po gidrodinamike: I. O vikhrevom dvizhenii; II. O preryvnom dvizhenii zhidkosti, M., 1902, 75–99; Гельмгольц Г., Основы вихревой теории, Инст. компьютерн. исслед., М.–Ижевск, 2002, 57–73
[17] Cheremnykh O. K., “O dvizhenii vikhrevykh kolets v neszhimaemoi srede”, Nelineinaya dinamika, 4:2 (2008), 417–428
[18] Sharle K. L., Nebesnaya mekhanika, Nauka, M., 1966, 627 pp. | MR
[19] Bagrets A. A., Bagrets D. A., “Nonintegrability of two problems in vortex dynamics”, Chaos, 7:3 (1997), 368–375 | DOI | MR | Zbl
[20] Blackmore D., Brons M., Goullet A., “A coaxial vortex ring model for vortex breakdown”, Phys. D, 237 (2008), 2817–2844 | DOI | MR | Zbl
[21] Blackmore D., Champanerkar J., Wang Ch., “A generalized Poincaré\f Birkhoff theorem with applications to coaxial vortex ring motion”, Discrete Contin. Dyn. Syst. Ser. B, 5:1 (2005), 15–33 | MR | Zbl
[22] Blackmore D., Knio O., “Transition from quasiperiodicity to chaos for three coaxial vortex rings”, ZAMM Z. Angew. Math. Mech., 80 (2000), 173–176 | DOI
[23] Blackmore D., Knio O., “KAM theory analysis of the dynamics of three coaxial vortex rings”, Phys. D, 140 (2000), 321–348 | DOI | MR | Zbl
[24] Borisov A. V., Kilin A. A., Mamaev I. S., “Reduction and chaotic behavior of point vortices on a plane and a sphere”, Discrete Contin. Dyn. Syst., 2005, suppl., 100–109 | MR | Zbl
[25] Borisov A. V., Mamaev I. S., “Isomorphisms of geodesic flows on quadrics”, Regul. Chaotic Dyn., 14:4–5 (2009), 455–465 | DOI | MR | Zbl
[26] Chenciner A., Montgomery R., “A remarkable periodic solution of the three body problem in the case of equal masses”, Ann. of Math. (2), 152 (2000), 881–901 ; К. Симо, С. Смейл, А. Шенсине и др., Современные проблемы хаоса и нелинейности, Сб. ст., НИЦ «РХД», Инст. компьютерн. исслед., М.–Ижевск, 2002, 179–201 | DOI | MR | Zbl
[27] Dyson F. W., “The potential of an anchor ring”, Philos. Trans. Roy. Soc. London Ser. A, 184 (1893), 43–95 | DOI
[28] Dyson F. W., “The potential of an anchor ring: P. 2”, Philos. Trans. Roy. Soc. London Ser. A, 184 (1893), 1041–1106 | DOI
[29] Fraenkel L. E., “On steady vortex rings of small cross-section in a ideal fluid”, Proc. R. Soc. London Ser. A, 316 (1970), 29–62 | DOI | Zbl
[30] Fraenkel L. E., “Examples of steady vortex rings of small cross-section in an ideal fluid”, J. Fluid Mech., 51 (1972), 119–135 | DOI | Zbl
[31] Fraenkel L. E., Berger M. S., “A global theory of steady vortex rings in an ideal fluid”, Acta Math., 132 (1974), 13–51 | DOI | MR | Zbl
[32] Gröbli W., “Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden”, Vierteljschr. Naturf. Ges. Zürich, 22 (1877), 37–82, 129–168
[33] Helmholtz H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 ; Gelmgolts G., “Ob integralakh uravnenii gidrodinamiki, sootvetstvuyuschikh vikhrevym dvizheniyam”, Nelineinaya dinamika, 2:4 (2006), 473–507 | DOI | Zbl
[34] Hicks W. M., “On the steady motion of a hollow vortex”, Proc. R. Soc. London, 35 (1883), 304–308 | DOI
[35] Hicks W. M., “Researches on the theory of vortex rings: P. 2”, Philos. Trans. Roy. Soc. London Ser. A, 176 (1885), 725–780 | DOI
[36] Hicks W. M., “On the mutual threading of vortex rings”, Proc. R. Soc. London Ser. A, 102 (1922), 111–113 | DOI
[37] Hicks W. M., “Researches in vortex motion: P. 3. On spiral or gyrostatic vortex aggregates”, Philos. Trans. Roy. Soc. London Ser. A, 192 (1899), 33–99 | DOI
[38] Hill M. J. M., “On a spherical vortex”, Philos. Trans. Roy. Soc. London Ser. A, 185 (1894), 213–245 | DOI
[39] Konstantinov M., “Chaotic phenomena in the interaction of vortex rings”, Phys. Fluids, 6:5 (1994), 1752–1767 | DOI | MR | Zbl
[40] Lamb H., Hydrodynamics, 6th ed., Cambridge Univ. Press, Cambridge, 1932, 768 pp. ; Lamb G., Gidrodinamika, Gostekhizdat, M.–L., 1947, 928 pp. | MR | Zbl
[41] Levy H., Forsdyke A. G., “The stability of an infinite system of circular vortices”, Proc. R. Soc. London Ser. A, 114 (1927), 594–604 | DOI | Zbl
[42] Levy H., Forsdyke A. G., “The vibrations of an infinite system of vortex rings”, Proc. R. Soc. London Ser. A, 116 (1927), 352–379 | DOI | Zbl
[43] Maxwell J. C., “Letter to William Thomson, 6 October 1868”, The scientific letters and papers of James Clerk Maxwell, v. 2, ed. P. M. Harman, Cambridge Univ. Press, Cambridge, 1990, 446–448 ; “Pismo Dzh. Maksvella U. Tomsonu ot 6 oktyabrya 1868 goda”, Nelineinaya dinamika, 8:1 (2012), 161–165 | MR | MR
[44] Maxwell J. C., A treatise on electricity and magnetism, In 2 vols., Clarendon, Oxford, 1873, 464; 456 pp.
[45] Maxworthy T., “Some experimental studies of vortex rings”, J. Fluid Mech., 81 (1977), 465–495 | DOI
[46] Meleshko V. V., “Coaxial axisymmetric vortex rings: 150 years after Helmholtz”, Theor. Comput. Fluid Dynam., 24 (2010), 403–431 | DOI | Zbl
[47] Moore C., “Braids in classical gravity”, Phys. Rev. Lett., 70 (1993), 3675–3679 | DOI | MR | Zbl
[48] Moore D. W., Saffman P. G., “A note on the stability of a vortex ring of small cross-section”, Proc. R. Soc. London Ser. A, 338:1615 (1974), 535–537 | DOI
[49] Roberts P. H., Donnelly R. J., “Dynamics of vortex rings”, Phys. Lett. A, 31 (1970), 137–138 | DOI
[50] Novikov E. A., “Hamiltonian description of axisymmetric vortex flows and the system of vortex rings”, Phys. Fluids, 28:9 (1985), 2921–2922 | DOI | Zbl
[51] Pocklington H. C., “The complete system of the periods of a hollow vortex ring”, Philos. Trans. Roy. Soc. London Ser. A, 186 (1895), 603–619 | DOI
[52] Saffman P. G., “The velocity of viscous vortex rings”, Stud. Appl. Math., 49 (1970), 371–380 | Zbl
[53] Saffman P. G., Vortex dynamics, Cambridge Univ. Press, Cambridge, 1992, 311 pp. ; Seffmen F. Dzh., Dinamika vikhrei, Nauchnyi mir, M., 2000, 376 pp. | MR | Zbl
[54] Shariff K., “Vortex rings”, Annu. Rev. Fluid Mech., 24 (1992), 235–279 | DOI | MR | Zbl
[55] Simó C., “Dynamical properties of the figure eight solution of the three-body problem”, Celestial mechanics (Evanston, IL, 1999), Contemp. Math., 292, AMS, Providence, RI, 2002, 209–228 | DOI | MR | Zbl
[56] Simó C., Stuchi T. J., “Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem”, Phys. D, 140:1–2 (2000), 1–32 | DOI | MR | Zbl
[57] Llewellyn Smith S. G., Hattori Y., “Axisymmetric magnetic vortices with swirl”, Commun. Nonlinear Sci. Numer. Simul., 2012 (to appear)
[58] Thomson J. J., “On the vibrations of a vortex ring, and the action upon each other of two vortices in a perfect fluid”, Philos. Trans. Roy. Soc. London, 173 (1882), 493–521 | DOI
[59] Thomson W., “On vortex atoms”, Philos. Mag. Ser. 4, 34 (1867), 15–24