Motion of the oloid on the horizontal plane
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 825-835

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a kinematic analysis and numerical simulation of the toy known as the oloid. The oloid is defined by the convex hull of two equal radius disks whose symmetry planes are at right angles with the distance between their centers equal to their radius. The no-slip constraints of the oloid are integrable, hence the system is essentially holonomic. In this paper we present analytic expressions for the trajectories of the ground contact points, basic dynamic analysis, and observations on the unique behavior of this system.
Keywords: oloid, rolling motion, holonomic system, kinematics.
@article{ND_2011_7_4_a5,
     author = {A. S. Kuleshov and M. Hubbard and D. L. Peterson and G. Gede},
     title = {Motion of the oloid on the horizontal plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {825--835},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_4_a5/}
}
TY  - JOUR
AU  - A. S. Kuleshov
AU  - M. Hubbard
AU  - D. L. Peterson
AU  - G. Gede
TI  - Motion of the oloid on the horizontal plane
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 825
EP  - 835
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_4_a5/
LA  - ru
ID  - ND_2011_7_4_a5
ER  - 
%0 Journal Article
%A A. S. Kuleshov
%A M. Hubbard
%A D. L. Peterson
%A G. Gede
%T Motion of the oloid on the horizontal plane
%J Russian journal of nonlinear dynamics
%D 2011
%P 825-835
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_4_a5/
%G ru
%F ND_2011_7_4_a5
A. S. Kuleshov; M. Hubbard; D. L. Peterson; G. Gede. Motion of the oloid on the horizontal plane. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 825-835. http://geodesic.mathdoc.fr/item/ND_2011_7_4_a5/