Billiard dynamics: A survey with the emphasis on open problems
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 489-512.

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey of the subject, emphasizing the open problems.
Keywords: billiard flow, periodic orbits, elliptic dynamics, hyperbolic dynamics, parabolic dynamics, Birkhoff conjecture, phase locking, security.
Mots-clés : billiard map
@article{ND_2011_7_3_a5,
     author = {Eugene Gutkin},
     title = {Billiard dynamics: {A} survey with the emphasis on open problems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {489--512},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a5/}
}
TY  - JOUR
AU  - Eugene Gutkin
TI  - Billiard dynamics: A survey with the emphasis on open problems
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 489
EP  - 512
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a5/
LA  - ru
ID  - ND_2011_7_3_a5
ER  - 
%0 Journal Article
%A Eugene Gutkin
%T Billiard dynamics: A survey with the emphasis on open problems
%J Russian journal of nonlinear dynamics
%D 2011
%P 489-512
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a5/
%G ru
%F ND_2011_7_3_a5
Eugene Gutkin. Billiard dynamics: A survey with the emphasis on open problems. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 489-512. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a5/

[1] Amiran E., “Caustics and evolutes for convex planar domains”, J. Differential Geom., 28 (1988), 345–357 | MR | Zbl

[2] Angenent S. B., “A remark on the topological entropy and invariant circles of an area preserving twist map”, Twist mappings and their applications, IMA Vol. Math. Appl., 44, Springer, New York, 1992, 1–5 | MR

[3] Artuso R., Casati G., Guarneri I., “Numerical study on ergodic properties of triangular billiards”, Phys. Rev. E, 55 (1997), 6384–6390 | DOI | MR

[4] Bangert V., Gutkin E., “Insecurity for compact surfaces of positive genus”, Geom. Dedicata, 146 (2010), 165–191 | DOI | MR | Zbl

[5] Baryshnikov Yu., Zharnitsky V., “Sub-Riemannian geometry and periodic orbits in classical billiards”, Math. Res. Lett., 13 (2006), 587–598 | MR | Zbl

[6] Berger M., Geometry revealed: A Jacob's ladder to modern higher geometry, Springer, Heidelberg, 2010, 831 pp. | MR

[7] Bialy M., “Convex billiards and a theorem by E. Hopf”, Math. Z., 214 (1993), 147–154 | DOI | MR | Zbl

[8] Birkhoff G. D., Dynamical systems, AMS, Providence, RI, 1927, 305 pp. ; ; Birkgof D., Dinamicheskie sistemy, UdGU, Izhevsk, 1999, 408 pp.; НИЦ «РХД», М.–Ижевск, 2002, 406 с. http://www.ams.org/bookstore/collseries | MR

[9] Boshernitzan M., “A condition for minimal interval exchange maps to be uniquely ergodic”, Duke Math. J., 52 (1985), 733–752 | DOI | MR

[10] Bunimovich L., “Billiards and other hyperbolic systems”, Dynamical systems, ergodic theory and applications, Encyclopaedia of Mathematical Sciences, 100, eds. Ya. G. Sinai et al., Springer, Berlin, 2000, 192–233 | MR

[11] Burns K., Gutkin E., “Growth of the number of geodesics between points and insecurity for Riemannian manifolds”, Discrete Contin. Dyn. Syst., 21 (2008), 403–413 | DOI | MR | Zbl

[12] Casati G., Prosen T., “Mixing property of triangular billiards”, Phys. Rev. Lett., 83 (1999), 4729–4732 | DOI

[13] Chernov N. I., “Decay of correlations in dispersing billiards”, J. Stat. Phys., 94 (1999), 513–556 | DOI | MR | Zbl

[14] Chernov N. I., “Entropy, Lyapunov exponents and mean-free path for billiards”, J. Stat. Phys., 88 (1997), 1–29 | DOI | MR | Zbl

[15] Chernov N., Markarian R., Chaotic billiards, Math. Surveys Monogr., 127, AMS, Providence, RI, 2006, 316 pp. | MR | Zbl

[16] Cheung Y., “Hausdorff dimension of the set of nonergodic directions”, Ann. of Math. (2), 158:2 (2003), 661–678, with an appendix by M. Boshernitzan | DOI | MR | Zbl

[17] Cipra B., Hanson R., Kolan E., “Periodic trajectories in right-triangle billiards”, Phys. Rev. E, 52 (1995), 2066–2071 | DOI | MR

[18] Eskin A., Masur H., “Asymptotic formulas on flat surfaces”, Ergodic Theory Dynam. Systems, 21 (2001), 443–478 | DOI | MR | Zbl

[19] Eskin A., Masur H., Schmoll M., “Billiards in rectangles with barriers”, Duke Math. J., 118 (2003), 427–463 | DOI | MR | Zbl

[20] Eskin A., Masur H., Zorich A., “Moduli spaces of abelian differentials: The principal boundary, counting problems and the Siegel–Veech constants”, Publ. Math. Inst. Hautes Études Sci., 2003, no. 97, 61–179 | MR | Zbl

[21] Eskin A., Okunkov A., “Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials”, Invent. Math., 145 (2001), 59–103 | DOI | MR | Zbl

[22] Finn R., “Floating bodies subject to capillary attractions”, J. Math. Fluid Mech., 11 (2009), 443–458 | DOI | MR | Zbl

[23] Fox R. H., Kershner R. B., “Concerning the transitive properties of geodesics on a rational polyhedron”, Duke Math. J., 2 (1936), 147–150 | DOI | MR

[24] Gerber M., Ku W.-K., “A dense G-delta set of Riemannian metrics without the finite blocking property”, Math. Res. Lett., 18 (2011), 389–404 | MR

[25] Glashow S. L., Mittag L., “Three rods on a ring and the triangular billiard”, J. Stat. Phys., 87 (1997), 937–941 | DOI | MR

[26] Gruber P. M., Convex and discrete geometry, Grundlehren Math. Wiss., 336, Springer, Berlin, 2007, 578 pp. | MR | Zbl

[27] Gutkin E., “Billiard flows on almost integrable polyhedral surfaces”, Ergodic Theory Dynam. Systems, 4 (1984), 560–584 | DOI | MR

[28] Gutkin E., “Billiards in polygons”, Phys. D, 19 (1986), 311–333 | DOI | MR | Zbl

[29] Gutkin E., “Billiard tables of constant width and the dynamical characterizations of the circle”, Workshop on dynamics and related topics: Proc. Penn. State Univ., 1993, 21–24

[30] Gutkin E., “Billiards in polygons: Survey of recent results”, J. Stat. Phys., 83 (1996), 7–26 | DOI | MR | Zbl

[31] Gutkin E., “Two applications of calculus to triangular billiards”, Amer. Math. Monthly, 104 (1997), 618–623 | DOI | MR

[32] Gutkin E., “Billiard dynamics: A survey with the emphasis on open problems”, Regul. Chaotic Dyn., 8:1 (2003), 1–13 | DOI | MR | Zbl

[33] Gutkin E., “Blocking of billiard orbits and security for polygons and flat surfaces”, Geom. Funct. Anal., 15:1 (2005), 83–105 | DOI | MR | Zbl

[34] Gutkin E., “Insecure configurations in lattice translation surfaces, with applications to polygonal billiards”, Discrete Contin. Dyn. Syst., 16 (2006), 367–382 | DOI | MR | Zbl

[35] Gutkin E., A few remarks on periodic orbits for planar billiard tables, preprint, 2006, arXiv: abs/math/0612039 | MR

[36] Gutkin E., “Topological entropy and blocking cost for geodesics in Riemannian manifolds”, Geom. Dedicata, 138 (2009), 13–23 | DOI | MR | Zbl

[37] Gutkin E., Capillary floating and the billiard ball problem | DOI

[38] Gutkin E., Haydn N., “Topological entropy of polygon exchange transformations and polygonal billiards”, Ergodic Theory Dynam. Systems, 17 (1997), 849–867 | DOI | MR | Zbl

[39] Gutkin E., Hubert P., Schmidt Th. A., “Affine diffeomorphisms of translation surfaces: Periodic points, Fuchsian groups, and arithmeticity”, Ann. Sci. École Norm. Sup. (4), 36 (2003), 847–866 | MR | Zbl

[40] Gutkin E., Judge C., “The geometry and arithmetic of translation surfaces with applications to polygonal billiards”, Math. Res. Lett., 3 (1996), 391–403 | MR | Zbl

[41] Gutkin E., Judge C., “Affine mappings of translation surfaces: Geometry and arithmetic”, Duke Math. J., 103 (2000), 191–213 | DOI | MR | Zbl

[42] Gutkin E., Katok A., “Caustics for inner and outer billiards”, Comm. Math. Phys., 173 (1995), 101–133 | DOI | MR | Zbl

[43] Gutkin E., Knill O., “Billiards that share a triangular caustic”, New trends for Hamiltonian systems and celestial mechanics (Cocoyoc, 1994), Adv. Ser. Nonlinear Dynam., 8, eds. E. A. Lacomba, J. Llibre, World Sci. Publ., River Edge, NJ, 1996, 199–213 | MR | Zbl

[44] Gutkin E., Rams M., “Growth rates for geometric complexities and counting functions in polygonal billiards”, Ergodic Theory Dynam. Systems, 29 (2009), 1163–1183 | DOI | MR | Zbl

[45] Gutkin E., Schroeder V., “Connecting geodesics and security of configurations in compact locally symmetric spaces”, Geom. Dedicata, 118 (2006), 185–208 | DOI | MR | Zbl

[46] Gutkin B., Gutkin E., Smilansky U., “Hyperbolic billiards on surfaces of constant curvature”, Comm. Math. Phys., 208 (1999), 65–90 | DOI | MR | Zbl

[47] Gutkin E., Tabachnikov S., “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3-4 (2002), 277–301 | DOI | MR | Zbl

[48] Gutkin E., Tabachnikov S., “Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards on surfaces of constant curvature”, Mosc. Math. J., 6 (2006), 673–701 | MR | Zbl

[49] Gutkin E., Troubetzkoy S., “Directional flows and strong recurrence for polygonal billiards”, Internat. conf. on dynamical systems (Montevideo, 1995), Pitman Res. Notes Math. Ser., 362, eds. F. Ledrappier, J. Lewowicz, Sh. E. Newhouse, Longman, Harlow, 1996, 21–45 | MR | Zbl

[50] Halbeisen L., Hungerbuhler N., “On periodic billiard trajectories in obtuse triangles”, SIAM Rev., 42 (2000), 657–670 | DOI | MR | Zbl

[51] Handbook of dynamical systems, v. 1A, eds. B. Hasselblatt, A. Katok, North-Holland, Amsterdam, 2002, 1220 pp. | MR

[52] Hard ball systems and the Lorentz gas, Encyclopaedia of Mathematical Sciences, 101, ed. D. Szasz, Springer, Berlin, 2000, 458 pp. | MR

[53] Hardy G. H., Wright E. M., An introduction to the theory of numbers, 5th ed., Oxford Univ. Press, Oxford, 1984, 426 pp. | MR

[54] Hiemer P., Snurnikov V., “Polygonal billiards with small obstacles”, J. Stat. Phys., 90 (1998), 453–466 | DOI | MR | Zbl

[55] Hooper W. P., Schwartz R. E., “Billiards in nearly isosceles triangles”, J. Mod. Dynam., 3 (2009), 159–231 | DOI | MR | Zbl

[56] Hubacher A., “Instability of the boundary in the billiard ball problem”, Comm. Math. Phys., 108 (1987), 483–488 | DOI | MR | Zbl

[57] Innami N., “Convex curves whose points are vertices of billiard triangles”, Kodai Math. J., 11 (1988), 17–24 | DOI | MR | Zbl

[58] Katok A., “The growth rate for the number of singular and periodic orbits for a polygonal billiard”, Comm. Math. Phys., 111 (1987), 151–160 | DOI | MR | Zbl

[59] Katok A., “Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems”, Ergodic Theory Dynam. Systems, 14 (1994), 757–785, with the collaboration of K. Burns | DOI | MR | Zbl

[60] Katok A., “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 1980, no. 51, 137–173 | DOI | MR | Zbl

[61] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR

[62] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999, 767 pp.

[63] Katok A., Strelcyn J.-M., Ledrappier F., Przytycki F., Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Math., 1222, Springer, Berlin, 1986, 283 pp. | MR | Zbl

[64] Kenyon R., Smillie J., “Billiards on rational-angled triangles”, Comment. Math. Helv., 75 (2000), 65–108 | DOI | MR | Zbl

[65] Kerckhoff S., Masur H., Smillie J., “Ergodicity of billiard flows and quadratic differentials”, Ann. of Math. (2), 124 (1986), 293–311 | DOI | MR | Zbl

[66] Masur H., “Lower bounds for the number of saddle connection and closed trajectories of a quadratic differential”, Holomorphic functions and moduli, Proc. of the workshop (Berkeley, CA, 1986), v. 1, Math. Sci. Res. Inst. Publ., 10, eds. D. Drasin, C. J. Earle, F. W. Gehring, I. Kra, A. Marden, Springer, New York, 1988, 215–228 | MR

[67] Masur H., “The growth rate of trajectories of a quadratic differential”, Ergodic Theory Dynam. Systems, 10 (1990), 151–176 | DOI | MR | Zbl

[68] Masur H., Smillie J., “Hausdorff dimension of sets of nonergodic measured foliations”, Ann. of Math. (2), 134 (1991), 455–543 | DOI | MR | Zbl

[69] Masur H., Tabachnikov S., “Rational billiards and flat structures”, Handbook of dynamical systems, v. 1A, eds. B. Hasselblatt, A. Katok, North-Holland, Amsterdam, 2002, 1015–1089 | MR | Zbl

[70] Mather J., “Glancing billiards”, Ergodic Theory Dynam. Systems, 2 (1982), 397–403 | DOI | MR | Zbl

[71] Oxtoby J. C., Measure and category: A survey of the analogies between topological and measure spaces, Grad. Texts in Math., 2, 2nd ed., Springer, New York – Berlin, 1980, 106 pp. | MR | Zbl

[72] Petkov V., Stojanov L., “On the number of periodic reflecting rays in generic domains”, Ergodic Theory Dynam. Systems, 8 (1988), 81–91 | DOI | MR | Zbl

[73] Poritsky H., “The billiard ball problem on a table with a convex boundary: An illustrative dynamical problem”, Ann. of Math. (2), 51 (1950), 446–470 | DOI | MR | Zbl

[74] Puchta J.-Ch., “On triangular billiards”, Comment. Math. Helv., 76 (2001), 501–505 | DOI | MR | Zbl

[75] Rychlik M., “Periodic points of the billiard ball map in a convex domain”, J. Diff. Geom., 30 (1989), 191–205 | MR | Zbl

[76] Safarov Yu., Vassiliev D., The asymptotic distribution of eigenvalues of partial differential operators., Transl. Math. Monogr., 155, AMS, Providence, RI, 1997, 354 pp. | MR

[77] Schwartz R. E., “Obtuse triangular billiards: 1. Near the (2, 3, 6) triangle”, Experiment. Math., 15:2 (2006), 161–182 | DOI | MR | Zbl

[78] Schwartz R. E., “Obtuse triangular billiards: 2. One hundred degrees worth of periodic trajectories”, Experiment. Math., 18:2 (2009), 137–171 | DOI | MR

[79] Simányi N., “The K-property of N billiard balls: 1”, Invent.Math., 108:3 (1992), 521–548 | DOI | MR | Zbl

[80] Smillie J., “The dynamics of billiard flows in rational polygons”, Dynamical systems, ergodic theory and applications, Encyclopaedia of Mathematical Sciences, 100, ed. Ya. G. Sinai, Springer, Berlin, 2000, 360–382 | MR

[81] Sossinsky A. B., “Configuration spaces of planar mechanical linkages with one degree of freedom”, Russ. J. Math. Phys., 15 (2008), 530–541 | DOI | MR | Zbl

[82] Stäckel P., “Geodätische Linien auf Polyederflächen”, Rend. Circ. Mat. Palermo, 22 (1906), 141–151 | DOI

[83] Stojanov L., “An estimate from above on the number of periodic orbits for semi-dispersed billiards”, Comm. Math. Phys., 124 (1989), 217–227 | DOI | MR | Zbl

[84] Stojanov L., “Note on the periodic points of the billiard”, J. Diff Geom., 34 (1991), 835–837 | MR | Zbl

[85] Szasz D., “On the K-property of some planar hyperbolic billiards”, Comm. Math. Phys., 145 (1992), 595–604 | DOI | MR | Zbl

[86] Tabachnikov S., Billiards, Soc. Math. de France, Paris, 1995, 142 pp. | Zbl

[87] Tabachnikov S., “Birkhoff billiards are insecure”, Discrete Contin. Dyn. Syst., 23 (2009), 1035–1040 | DOI | MR | Zbl

[88] Tabachnikov S., Geometry and billiards, AMS, Providence, RI, 2005, 176 pp. | MR | Zbl

[89] Veech W., “The billiard in a regular polygon”, Geom. Funct. Anal., 2 (1992), 341–379 | DOI | MR | Zbl

[90] Veech W., “Modular spaces of quadratic differentials”, J. Anal. Math., 55 (1990), 117–171 | DOI | MR | Zbl

[91] Veech W., “Teichmüller curves in modular space, Eisenstein series, and an application to triangulat billiards”, Invent. Math., 97 (1989), 553–583 | DOI | MR | Zbl

[92] Weyl H., “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)”, Math. Ann., 71 (1912), 441–479 | DOI | MR | Zbl

[93] Wojtkowski M., “Invariant families of cones and Lyapunov exponents”, Ergodic Theory Dynam. Systems, 5 (1985), 145–161 | DOI | MR | Zbl

[94] Wojtkowski M., “Measure theoretic entropy of the system of hard spheres”, Ergodic Theory Dynam. Systems, 8 (1988), 133–153 | DOI | MR | Zbl

[95] Wojtkowski M., “Principles for the design of billiards with nonvanishing Lyapunov exponents”, Comm. Math. Phys., 105 (1986), 391–414 | DOI | MR | Zbl

[96] Wojtkowski M., “Two applications of Jacobi felds to the billiard ball problem”, J. Diff. Geom., 40 (1994), 155–164 | MR | Zbl

[97] Young L. S., “Statistical properties of dynamical systems with some hyperbolicity”, Ann. of Math. (2), 147 (1998), 585–650 | DOI | MR | Zbl

[98] Bolotin S. V., “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 2 (1990), 33–36 | MR

[99] Bunimovich L. A., “Ob ergodicheskikh svoistvakh nekotorykh bilyardov”, Funkts. analiz i ego pril., 8:3 (1974), 73–74 | MR

[100] Bunimovich L. A., Sinai Ya. G., Chernov N. I., “Markovskie razbieniya dlya dvumernykh giperbolicheskikh billiardov”, UMN, 45:3(273) (1990), 97–134 | MR | Zbl

[101] Bunimovich L. A., Sinai Ya. G., Chernov N. I., “Statisticheskie svoistva dvumernykh giperbolicheskikh billiardov”, UMN, 46:4(280) (1991), 43–92 | MR

[102] Vorobets Ya. B., “O mere mnozhestva periodicheskikh tochek bilyarda”, Matem. zametki, 55:5 (1994), 25–35 | MR | Zbl

[103] Vorobets Ya. B., “Ergodichnost bilyardov v mnogougolnikakh”, Matem. sb., 188:3 (1997), 65–112 | MR | Zbl

[104] Vorobets Ya. B., Galperin G. A., Stepin A. M., “Periodicheskie bilyardnye traektorii v mnogougolnikakh: Mekhanizmy rozhdeniya”, UMN, 47:3(285) (1992), 9–74 | MR | Zbl

[105] Zemlyakov A. N., Katok A. B., “Topologicheskaya tranzitivnost billiardov v mnogougolnikakh”, Matem. zametki, 18:2 (1975), 291–300 | MR | Zbl

[106] Ivrii V. Ya., “O vtorom chlene spektralnoi asimptotiki dlya operatora Laplasa–Beltrami na mnogoobraziyakh s kraem”, Funkts. analiz i ego pril., 14:2 (1980), 25–34 | MR

[107] Katok A. B., Billiardnyi stol kak igrovaya ploschadka dlya matematika http://www.mccme.ru/ium/stcht.html

[108] Kozlov V. V., Treschev D. V., Billiardy: Geneticheskoe vvedenie v dinamiku sistem s udarami, MGU, M., 1991, 168 pp.

[109] Lazutkin V. F., “Suschestvovanie kaustik dlya billiardnoi zadachi v vypukloi oblasti”, Izv. AN SSSR. Ser. Matem., 37:1 (1973), 186–216 | MR | Zbl

[110] Sinai Ya. G., “K obosnovaniyu ergodicheskoi gipotezy dlya odnoi dinamicheskoi sistemy statisticheskoi mekhaniki”, Dokl. AN SSSR, 153 (1963), 1261–1264

[111] Sinai Ya. G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh bilyardov”, UMN, 25:2(152) (1970), 141–192 | MR | Zbl

[112] Chernov N. I., “Topologicheskaya entropiya i periodicheskie tochki dvumernykh giperbolicheskikh billiardov”, Funkts. analiz i ego pril., 25:1 (1991), 50–57 | MR