A rigid cylinder on a viscoelastic plane
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 601-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers two two-dimensional dynamical problems for an absolutely rigid cylinder interacting with a deformable flat base (the motion of an absolutely rigid disk on a base which in non-deformed condition is a straight line). The base is a sufficiently stiff viscoelastic medium that creates a normal pressure $p(x)=kY(x)+\nu\dot Y(x)$, where $x$ is a coordinate on the straight line, $Y(x)$ is a normal displacement of the point $x$, and $k$ and $v$ are elasticity and viscosity coefficients (the Kelvin–Voigt medium). We are also of the opinion that during deformation the base generates friction forces, which are subject to Coulomb's law. We consider the phenomenon of impact that arises during an arbitrary fall of the disk onto the straight line and investigate the disk's motion “along the straight line” including the stages of sliding and rolling.
Keywords: Kelvin–Voight medium, impact, viscoelasticity
Mots-clés : friction.
@article{ND_2011_7_3_a13,
     author = {Alexander S. Kuleshov and D. V. Treschev and T. B. Ivanova and O. S. Naimushina},
     title = {A rigid cylinder on a viscoelastic plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {601--625},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a13/}
}
TY  - JOUR
AU  - Alexander S. Kuleshov
AU  - D. V. Treschev
AU  - T. B. Ivanova
AU  - O. S. Naimushina
TI  - A rigid cylinder on a viscoelastic plane
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 601
EP  - 625
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a13/
LA  - ru
ID  - ND_2011_7_3_a13
ER  - 
%0 Journal Article
%A Alexander S. Kuleshov
%A D. V. Treschev
%A T. B. Ivanova
%A O. S. Naimushina
%T A rigid cylinder on a viscoelastic plane
%J Russian journal of nonlinear dynamics
%D 2011
%P 601-625
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a13/
%G ru
%F ND_2011_7_3_a13
Alexander S. Kuleshov; D. V. Treschev; T. B. Ivanova; O. S. Naimushina. A rigid cylinder on a viscoelastic plane. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 601-625. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a13/

[1] Galin L. A., Kontaktnye zadachi teorii uprugosti i vyazkouprugosti, Nauka, M., 1980, 304 pp.

[2] Goryacheva I. G., Mekhanika friktsionnogo vzaimodeistviya, Nauka, M., 2001, 478 pp.

[3] Ishlinskii A. Yu., “Trenie kacheniya”, PMM, 2:2 (1938), 245–260

[4] Ishlinskii A. Yu., “Teoriya soprotivleniya perekatyvaniyu (trenie kacheniya) i smezhnykh yavlenii”, Vsesoyuz. konf. po treniyu i iznosu v mashinakh, v. 2, Izd-vo AN SSSR, M.–L., 1940, 255–264

[5] Ishlinskii A. Yu., “O proskalzyvanii v oblasti kontakta pri trenii kacheniya”, Izv. AN SSSR. OTN, 1956, no. 6, 3–15

[6] Al-Bender F., de Moerlooze K., “Characterization and modelling of friction and wear: An overview”, Sustainable Construction and Design, 2:1 (2011), 19–28

[7] Bridges F. G., Hatzes A., Lin D. N. C., “Structure, stability and evolution of Saturn's rings”, Nature, 309 (1984), 333–338 | DOI

[8] Brilliantov N., Spahn F., Hertzsch J.-M., Pöschel Th., “Model for collisions in granular gases”, Phys. Rev. E, 53:3 (1996), 5382–5392 | DOI

[9] Flom D. G., Bueche A. M., “Theory of rolling friction for spheres”, J. Appl. Phys., 30 (1959), 1725–1730 | DOI | Zbl

[10] Flom D. G., “Dynamic mechanical losses in rolling contacts”, Rolling Contact Phenomena, ed. J. B. Badwell, Elsevier, London, 1962, 97–112

[11] Johnson K. L., Contact mechanics, Cambridge Univ. Press, Cambridge, 1987, 468 pp. ; Dzhonson K., Mekhanika kontaktnogo vzaimodeistviya, Mir, M., 1989, 510 pp.

[12] Thompson W., “On the elasticity and viscosity of metals”, Proc. R. Soc. Lond. Ser. A, 14 (1865), 289–297 | DOI

[13] Maxwell J. C., “On the dynamical theory of gases”, Philos. Trans. R. Soc. Lond. Ser. A, 157 (1866), 26–78

[14] May W. D., Morris E. L., Atack D., “Rolling friction of a hard cylinder over a viscoelastic material”, J. Appl. Phys., 30:11 (1959), 1713–1724 | DOI | Zbl

[15] Montaine M., Heckel M., Kruelle C., Schwager T., Pöschel Th., The coefficient of restitution as a fluctuating quantity, arXiv: [cond-mat.stat-mech] 31 Mar. 2011 1104.0049V1

[16] Ramirez R., Pöschel Th., Brilliantov N., Schwager T., “Coefficient of restitution of colliding viscoellastic spheres”, Phys. Rev. E, 60:4 (1999), 4465–4472 | DOI

[17] Reynolds O., “On rolling friction”, Philos. Trans. R. Soc. Lond. Ser. A, 166 (1876), 155–174 | DOI

[18] Reynolds O., “On rolling friction”, Proc. R. Soc. Lond. Ser. A, 23 (1875), 506–509

[19] Tabor D., “The mechanism of rolling friction”, Philos. Mag., 43 (1952), 1055–1059

[20] Eldredge K. R., Tabor D., “The mechanism of rolling friction: 1. The plastic range”, Proc. R. Soc. Lond. Ser. A, 229 (1955), 181–198 | DOI

[21] Tabor D., “The mechanism of rolling friction: 2. The elastic range”, Proc. R. Soc. Lond. Ser. A, 229 (1955), 198–220 | DOI

[22] Bowden F. P., Tabor D., Friction and lubrication of solids: Part 1, Clarendon Press, Oxford, 1950, 372 pp.

[23] Bowden F. P., Tabor D., Friction and lubrication of solids: Part 2, Clarendon Press, Oxford, 1964, 544 pp.

[24] Bouden F. P., Teibor D., Trenie i smazka tverdykh tel, Mashinostroenie, M., 1968, 544 pp.

[25] Greenwood J. A., Minshall H., Tabor D., “Hysteresis losses in rolling and sliding friction”, Proc. R. Soc. Lond. Ser. A, 259 (1961), 480–507 | DOI

[26] Voigt W., “Ueber innere Reibung fester Körper, insbesondere der Metalle”, Ann. Phys., 283 (1892), 671–693

[27] Pöschel Th., Schwager T., Brilliantov N. V., “Rolling friction of a hard cylinder on a viscous plane”, Eur. Phys. J. B Condens. Matter Phys., 10 (1999), 169–174

[28] Pöschel Th., Schwager T., Brilliantov N. V., Zaikin A., “Rolling friction and bistability of rolling motion”, Powders and Grains: Proc. of the 5th Internat. Conf. on Micromechanics of Granular Media, eds. R. Garcia-Rojo, H. J. Herrmann, S. McNamara, Balkema Publ., New York, 2005, 505–509

[29] Pöschel Th., Brilliantov N. V., Zaikin A., “Bistability and noise-enhanced velocity of rolling motion”, Europhys. Lett., 69 (2005), 371–377 | DOI

[30] Winkler E., Die Lehre von der Elasticitaet und Festigkeit mit besonderer Rücksicht auf ihre Anwendung in der Technik: für polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc.: 1 Theil, Dominicus, Prague, 1867, 388 pp.