The birth of biofluiddynamics
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 367-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

An introductory note to the Russian translation of G. Taylors 1951 paper.
@article{ND_2011_7_2_a9,
     author = {J. Koiller and K. M. Ehlers},
     title = {The birth of biofluiddynamics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {367--370},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a9/}
}
TY  - JOUR
AU  - J. Koiller
AU  - K. M. Ehlers
TI  - The birth of biofluiddynamics
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 367
EP  - 370
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a9/
LA  - ru
ID  - ND_2011_7_2_a9
ER  - 
%0 Journal Article
%A J. Koiller
%A K. M. Ehlers
%T The birth of biofluiddynamics
%J Russian journal of nonlinear dynamics
%D 2011
%P 367-370
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a9/
%G ru
%F ND_2011_7_2_a9
J. Koiller; K. M. Ehlers. The birth of biofluiddynamics. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 367-370. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a9/

[1] Taylor G. I., “Analysis of the swimming of microscopic organisms”, Proc. Roy. Soc. London. Ser. A, 209 (1951), 447–461 | DOI | MR | Zbl

[2] “Film Review: Low Reynolds Number Flow, by Sir Geoffrey Taylor”, J. Fluid Mech., 29:1 (1967), 204–207 http://web.mit.edu/hml/ncfmf.html | DOI

[3] Rothschild V., “Sea urchin spermatozoa”, Biol. Rev., 26 (1951), 1–27 | DOI

[4] Taylor G. I., “The action of waving cylindrical tails in propelling microscopic organisms”, Proc. Roy. Soc. London. Ser. A, 211 (1952), 225–239 | DOI | MR | Zbl

[5] Taylor G. I., “Analysis of the swimming of long and narrow animals”, Proc. Roy. Soc. London. Ser. A, 214 (1952), 158–183 | DOI | Zbl

[6] Lighthill J., “On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers”, Comm. Pure Appl. Math., 5 (1952), 109–118 | DOI | MR | Zbl

[7] Blake J. R., “A spherical envelope approach to ciliary propulsion”, J. Fluid Mech., 46 (1971), 199–208 | DOI | Zbl

[8] Swimming and flying in nature, In 2 vols, eds. Th. Y.-t. Wu et al., Plenum, New York, 1975, 1005 pp. http://oralhistories.library.caltech.edu16101Wu_OHO.pdf

[9] Jahn T. L., Votta J. J., “Locomotion of Protozoa”, Annu. Rev. Fluid Mech., 4 (1972), 93–116 | DOI

[10] Ludwig W., “Zur Theorie der Flimmerbewegung (Dynamik, Nutzeffeckt, Energiebilanz)”, J. Comp. Physiol. A, 13 (1930), 397–504

[11] Purcell E. M., “Life at low Reynolds number”, Amer. J. Phys., 45 (1977), 3–11 | DOI

[12] Shapere A., Wilczek F., “Geometry of self-propulsion at low Reynolds number”, J. Fluid Mech., 198 (1989), 557–585 | DOI | MR | Zbl

[13] Batchelor G. K., “Geoffrey Ingram Taylor (7 March 1886 – 27 June 1975)”, J. Fluid Mech., 173 (1986), 1–14 | DOI | MR | Zbl

[14] Batchelor G. K., The life and legacy of G. I. Taylor, Cambridge Univ. Press, Cambridge, 1996, 301 pp. | MR | Zbl

[15] Batchelor G. K., “An unfinished dialogue with G. I. Taylor”, J. Fluid Mech., 70:4 (1975), 625–638 | DOI | MR | Zbl

[16] Turner J. S. G. I., “Taylor in his later years”, Annu. Rev. Fluid Mech., 29 (1997), 1–25 | DOI | MR

[17] Ehlers K., Oster G., The Mysterious swimming of synechococcus, 2011 (submitted)

[18] Chan B., Balmforth N., Hosoi A., “Building a better snail: Lubrication and adhesive locomotion”, Phys. Fluids, 17 (2005), 113101, 14 pp. | DOI | MR | Zbl