On the terminal motion of sliding spinning disks with uniform Coulomb friction
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 339-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

We review previous investigations concerning the terminal motion of disks sliding and spinning with uniform dry friction across a horizontal plane. Previous analyses show that a thin circular ring or uniform circular disk of radius $R$ always stops sliding and spinning at the same instant. Moreover, under arbitrary nonzero initial values of translational speed $v$ and angular rotation rate $\omega$, the terminal value of the speed ratio $\epsilon_0=v/R\omega$ is always 1.0 for the ring and 0.653 for the uniform disk. In the current study we show that an annular disk of radius ratio $\eta=R_2/R_1$ stops sliding and spinning at the same time, but with a terminal speed ratio dependent on $\eta$. For a twotier disk with lower tier of thickness $H_1$ and radius $R_1$ and upper tier of thickness $Р_2$ and radius $R_2$, the motion depends on both $\eta$ and the thickness ratio $\lambda=H_1/H_2$. While translation and rotation stop simultaneously, their terminal ratio $\epsilon_0$ either vanishes when $k>\sqrt{2/3}$, is a nonzero constant when $1/2$, or diverges when $k1/2$, where k is the normalized radius of gyration. These three regimes are in agreement with those found by Goyal et al. [S. Goyal, A. Ruina, J. Papadopoulos, Wear 143 (1991) 331] for generic axisymmetric bodies with varying radii of gyration using geometric methods. New experiments with PVC disks sliding on a nylon fabric stretched over a plexiglass plate only partially corroborate the three different types of terminal motions, suggesting more complexity in the description of friction.
Keywords: rigid body dynamics, nonlinear behavior.
Mots-clés : terminal motion
@article{ND_2011_7_2_a8,
     author = {P. D. Weidman and Ch. P. Malhotra},
     title = {On the terminal motion of sliding spinning disks with uniform {Coulomb} friction},
     journal = {Russian journal of nonlinear dynamics},
     pages = {339--365},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/}
}
TY  - JOUR
AU  - P. D. Weidman
AU  - Ch. P. Malhotra
TI  - On the terminal motion of sliding spinning disks with uniform Coulomb friction
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 339
EP  - 365
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/
LA  - ru
ID  - ND_2011_7_2_a8
ER  - 
%0 Journal Article
%A P. D. Weidman
%A Ch. P. Malhotra
%T On the terminal motion of sliding spinning disks with uniform Coulomb friction
%J Russian journal of nonlinear dynamics
%D 2011
%P 339-365
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/
%G ru
%F ND_2011_7_2_a8
P. D. Weidman; Ch. P. Malhotra. On the terminal motion of sliding spinning disks with uniform Coulomb friction. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 339-365. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/

[1] Zhukovskii N. E., “Uslovie ravnovesiya tverdogo tela, opirayuschegosya na nepodvizhnuyu ploskost nekotoroi ploschadkoi i moguschego peremeschatsya vdol etoi ploskosti s treniem”, Sobr. soch., v. 1, ed. N. E. Zhukovskii, GTTI, M.–L., 1948, 339–354

[2] Goyal S., Ruina A., Papadopoulos J., “Planar sliding with dry friction: P. 1. Limit surface and moment function”, Wear, 143 (1991), 307–330 | DOI

[3] Goyal S., Ruina A., Papadopoulos J., “Planar sliding with dry friction: P. 2. Dynamics of motion”, Wear, 143 (1991), 331–352 | DOI

[4] Ishlinskii A. Yu., Sokolov B. N., Chernousko F. L., “O dvizhenii ploskikh tel pri nalichii sukhogo treniya”, Izv. RAN. MTT, 1981, no. 4, 17–28

[5] Voyenli K., Eriksen E., “On the motion of an ice hockey puck”, Amer. J. Phys., 53 (1985), 1149–1153 | DOI

[6] Mason M. T., Mechanics of robotic manipulation, MIT Press, Cambridge, MA, 2001, 272 pp.

[7] Goyal S., Planar sliding of a rigid body with dry friction: Limit surfaces and dynamics of motion, Ph. D. Thesis, Cornell University, Ithaca, 1989

[8] Farkash Z., Bartels G., Unger T., Volf D., “O sile treniya pri postupatelnom i vraschatelnom dvizhenii ploskogo tela”, Nelineinaya dinamika, 7:1 (2011), 139–146

[9] Halsey T. C., “Mechanics: Friction in a spin”, Nature, 424 (2003), 1005–1006 | DOI

[10] Kadau D., Bartels G., Brendel L., Wolf D. E., “Pore stabilization in cohesive granular systems”, Phase Transitions, 76:4-5 (2003), 315–331 | DOI

[11] Knight J. B., Fandrich G. C., Lau C. N., Jaeger H. M., Nagel S. R., “Density relaxation in a vibrated granular material”, Phys. Rev. E, 51 (1995), 3957–3963 | DOI

[12] Nicodemi M., Coniglio A., Herrmann H. J., “Frustration and slow dynamics of granular packings”, Phys. Rev. E, 55 (1997), 3962–3969 | DOI

[13] Weidman P. D., Malhotra C. P., “Regimes of terminal motion of sliding spinning disks”, Phys. Rev. Lett., 95:26 (2005), 264303, 4 pp. | DOI

[14] Abramowitz M., Stegun I., Handbook of mathematical functions, US Government Printing Office, Washington, DC, 1972, 1046 pp. | MR

[15] Wolfram S., Mathematica: A system for doing mathematics by computer, 2nd ed., Addison–Wesley, Boston, 1991, 961 pp.