Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_2_a8, author = {P. D. Weidman and Ch. P. Malhotra}, title = {On the terminal motion of sliding spinning disks with uniform {Coulomb} friction}, journal = {Russian journal of nonlinear dynamics}, pages = {339--365}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/} }
TY - JOUR AU - P. D. Weidman AU - Ch. P. Malhotra TI - On the terminal motion of sliding spinning disks with uniform Coulomb friction JO - Russian journal of nonlinear dynamics PY - 2011 SP - 339 EP - 365 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/ LA - ru ID - ND_2011_7_2_a8 ER -
P. D. Weidman; Ch. P. Malhotra. On the terminal motion of sliding spinning disks with uniform Coulomb friction. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 339-365. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/
[1] Zhukovskii N. E., “Uslovie ravnovesiya tverdogo tela, opirayuschegosya na nepodvizhnuyu ploskost nekotoroi ploschadkoi i moguschego peremeschatsya vdol etoi ploskosti s treniem”, Sobr. soch., v. 1, ed. N. E. Zhukovskii, GTTI, M.–L., 1948, 339–354
[2] Goyal S., Ruina A., Papadopoulos J., “Planar sliding with dry friction: P. 1. Limit surface and moment function”, Wear, 143 (1991), 307–330 | DOI
[3] Goyal S., Ruina A., Papadopoulos J., “Planar sliding with dry friction: P. 2. Dynamics of motion”, Wear, 143 (1991), 331–352 | DOI
[4] Ishlinskii A. Yu., Sokolov B. N., Chernousko F. L., “O dvizhenii ploskikh tel pri nalichii sukhogo treniya”, Izv. RAN. MTT, 1981, no. 4, 17–28
[5] Voyenli K., Eriksen E., “On the motion of an ice hockey puck”, Amer. J. Phys., 53 (1985), 1149–1153 | DOI
[6] Mason M. T., Mechanics of robotic manipulation, MIT Press, Cambridge, MA, 2001, 272 pp.
[7] Goyal S., Planar sliding of a rigid body with dry friction: Limit surfaces and dynamics of motion, Ph. D. Thesis, Cornell University, Ithaca, 1989
[8] Farkash Z., Bartels G., Unger T., Volf D., “O sile treniya pri postupatelnom i vraschatelnom dvizhenii ploskogo tela”, Nelineinaya dinamika, 7:1 (2011), 139–146
[9] Halsey T. C., “Mechanics: Friction in a spin”, Nature, 424 (2003), 1005–1006 | DOI
[10] Kadau D., Bartels G., Brendel L., Wolf D. E., “Pore stabilization in cohesive granular systems”, Phase Transitions, 76:4-5 (2003), 315–331 | DOI
[11] Knight J. B., Fandrich G. C., Lau C. N., Jaeger H. M., Nagel S. R., “Density relaxation in a vibrated granular material”, Phys. Rev. E, 51 (1995), 3957–3963 | DOI
[12] Nicodemi M., Coniglio A., Herrmann H. J., “Frustration and slow dynamics of granular packings”, Phys. Rev. E, 55 (1997), 3962–3969 | DOI
[13] Weidman P. D., Malhotra C. P., “Regimes of terminal motion of sliding spinning disks”, Phys. Rev. Lett., 95:26 (2005), 264303, 4 pp. | DOI
[14] Abramowitz M., Stegun I., Handbook of mathematical functions, US Government Printing Office, Washington, DC, 1972, 1046 pp. | MR
[15] Wolfram S., Mathematica: A system for doing mathematics by computer, 2nd ed., Addison–Wesley, Boston, 1991, 961 pp.