On the terminal motion of sliding spinning disks with uniform Coulomb friction
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 339-365
Voir la notice de l'article provenant de la source Math-Net.Ru
We review previous investigations concerning the terminal motion of disks sliding and spinning with uniform dry friction across a horizontal plane. Previous analyses show that a thin circular ring or uniform circular disk of radius $R$ always stops sliding and spinning at the same instant. Moreover, under arbitrary nonzero initial values of translational speed $v$ and angular rotation rate $\omega$, the terminal value of the speed ratio $\epsilon_0=v/R\omega$ is always 1.0 for the ring and 0.653 for the uniform disk. In the current study we show that an annular disk of radius ratio $\eta=R_2/R_1$ stops sliding and spinning at the same time, but with a terminal speed ratio dependent on $\eta$. For a twotier disk with lower tier of thickness $H_1$ and radius $R_1$ and upper tier of thickness $Р_2$ and radius $R_2$, the motion depends on both $\eta$ and the thickness ratio $\lambda=H_1/H_2$. While translation and rotation stop simultaneously, their terminal ratio $\epsilon_0$ either vanishes when $k>\sqrt{2/3}$, is a nonzero constant when $1/2$, or diverges when $k1/2$, where k is the normalized radius of gyration. These three regimes are in agreement with those found by Goyal et al. [S. Goyal, A. Ruina, J. Papadopoulos, Wear 143 (1991) 331] for generic axisymmetric bodies with varying radii of gyration using geometric methods. New experiments with PVC disks sliding on a nylon fabric stretched over a plexiglass plate only partially corroborate the three different types of terminal motions, suggesting more complexity in the description of friction.
Keywords:
rigid body dynamics, nonlinear behavior.
Mots-clés : terminal motion
Mots-clés : terminal motion
@article{ND_2011_7_2_a8,
author = {P. D. Weidman and Ch. P. Malhotra},
title = {On the terminal motion of sliding spinning disks with uniform {Coulomb} friction},
journal = {Russian journal of nonlinear dynamics},
pages = {339--365},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/}
}
TY - JOUR AU - P. D. Weidman AU - Ch. P. Malhotra TI - On the terminal motion of sliding spinning disks with uniform Coulomb friction JO - Russian journal of nonlinear dynamics PY - 2011 SP - 339 EP - 365 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/ LA - ru ID - ND_2011_7_2_a8 ER -
P. D. Weidman; Ch. P. Malhotra. On the terminal motion of sliding spinning disks with uniform Coulomb friction. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 339-365. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a8/