Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_2_a5, author = {E. A. Ryzhov}, title = {The integrable and nonintegrable motion of a vortex pair embedded inside an asymmetrical deformation flow}, journal = {Russian journal of nonlinear dynamics}, pages = {283--293}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a5/} }
TY - JOUR AU - E. A. Ryzhov TI - The integrable and nonintegrable motion of a vortex pair embedded inside an asymmetrical deformation flow JO - Russian journal of nonlinear dynamics PY - 2011 SP - 283 EP - 293 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a5/ LA - ru ID - ND_2011_7_2_a5 ER -
E. A. Ryzhov. The integrable and nonintegrable motion of a vortex pair embedded inside an asymmetrical deformation flow. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a5/
[1] Koshel K. V., Prants S. V., Khaoticheskaya advektsiya v okeane, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2008, 360 pp.
[2] McWilliams J. C., “The emergence of isolated, coherent vortices in turbulent flow”, J. Fluid Mech., 146 (1984), 1–43 | DOI | MR
[3] Baey J.-M., Carton X., “Vortex multipoles in two-layer rotating shallow-water flow”, J. Fluid Mech., 460 (2002), 151–175 | DOI | MR | Zbl
[4] Carton X., “Hydrodynamical modelling of oceanic vortices”, Surveys Geophys., 22 (2001), 179–263 | DOI
[5] Horton C. W., Baylor K. J., “Observations of cold-core Gulf Stream ring with an «explosive» elliptical instability”, J. Phys. Oceanogr., 21 (1991), 364–368 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[6] Kennelly M. A., Evans R. H., Joyce T. M., “Small-scale cyclones on the periphery of Gulf Stream warm-core rings”, J. Geophys. Res., 90 (1985), 8845–8857 | DOI
[7] Nof D., “Generation of ringlets”, Tellus A, 45 (1993), 299–310 | DOI
[8] Smeed D. A., “Baroclinic instability of three-layer flows: 2. Experiments with eddies”, J. Fluid Mech., 194 (1988), 233–259 | DOI | MR
[9] Thivolle-Cazat E., Sommeria J., Galmiche M., “Baroclinic instability of two-layer vortices in laboratory experiments”, J. Fluid Mech., 544 (2005), 69–97 | DOI | Zbl
[10] Roenby J., Aref H., “Chaos in body-vortex interactions”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466:2119 (2010), 1871–1891 | DOI | MR | Zbl
[11] Sutyrin G. G., Perrot X., Carton X., “Integrable motion of a vortex dipole in an axisymmetric flow”, Phys. Lett. A, 372:33 (2008), 5452–5457 | DOI | MR
[12] Aref H., “Integrable, chaos and turbulent vortex motion in two-dimensional flows”, Annu. Rev. Fluid Mech., 15 (1983), 345–389 | DOI | MR | Zbl
[13] Flierl G. R., “Isolated eddy models in geophysics”, Annu. Rev. Fluid Mech., 19 (1987), 493–530 | DOI | Zbl
[14] Hopfinger E. J., van Heijst G. J. F., “Vortices in rotating fluids”, Annu. Rev. Fluid Mech., 25 (1993), 241–289 | DOI | MR
[15] Rom-Kedar V., Leonard A., Wiggins S., “An analytical study of transport, mixing and chaos in an unsteady vortical flow”, J. Fluid Mech., 214 (1990), 347–394 | DOI | MR | Zbl
[16] Trieling R. R., van Wesenbeeck J. M. A., van Heijst G. J. F., “Dipolar vortices in a strain flow”, Phys. Fluids, 10 (1998), 144–159 | DOI | MR | Zbl
[17] Bannikova E. Yu., Kontorovich V. M., Reznik G. M., “Dinamika vikhrevoi pary v radialnom potoke”, ZhETF, 132 (2007), 615–622
[18] Perrot X., Carton X., “Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos”, Discrete Contin. Dyn. Syst. Ser. B, 11:4 (2009), 971–995 | DOI | MR | Zbl
[19] Sokolovskiy M. A., Koshel K. V., Carton X., “Baroclinic multipole evolution in shear and strain”, Geophys. Astrophys. Fluid Dyn., 105:4-5 (2011), 506–535 | DOI
[20] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2005, 368 pp.
[21] Sokolovskii M. A., Verron Zh., Dinamika vikhrevykh struktur v stratifitsirovannoi vraschayuscheisya zhidkosti, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2011, 386 pp.
[22] Kilin A. A., Borisov A. V., Mamaev I. S., “Dinamika tochechnykh vikhrei vnutri i vne krugovoi oblasti”, Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, Inst. kompyutern. issled., M.–Izhevsk, 2003, 414–440
[23] Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, Inst. kompyutern. issled., M.–Izhevsk, 2003, 704 pp.
[24] Tur A., Yanovsky V., “Point vortices with a rational necklace: New exact stationary solutions of the two-dimensional Euler equation”, Phys. Fluids, 16:8 (2004), 2877–2875 | DOI | MR
[25] Yanovsky V. V., Tur A. V., Kulik K. N., “Singularities motion equations in 2-dimensional ideal hydrodynamics of incompressible fluid”, Phys. Lett. A, 373 (2009), 2484–2487 | DOI
[26] Kulik K. N., Tur A. V., Yanovskii V. V., “Vzaimodeistvie tochechnogo i dipolnogo vikhrei v neszhimaemoi zhidkosti”, TMF, 162:3 (2010), 459–480 | MR | Zbl
[27] Reznik G. M., “Dinamika lokalizovannykh vikhrei na beta-ploskosti”, Izv. RAN. Fizika atmosfery i okeana, 46:6 (2010), 846–860 | MR
[28] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, V 10 tt.: T. 6: Gidrodinamika, Nauka, M., 1988, 736 pp.
[29] Pedlosky J., Geophysical fluid dynamics, 2nd ed., Springer, New York, 1987, 720 pp. | Zbl
[30] Gryanik V. M., Tevs M. V., “Dinamika singulyarnykh geostroficheskikh vikhrei v $N$-sloinoi modeli atmosfery (okeana)”, Izv. AN SSSR. Fizika atmosfery i okeana, 25:3 (1989), 243–256 | MR
[31] Ryzhov E. A., Koshel K. V., “Effekty khaoticheskoi advektsii v trekhsloinoi modeli okeana”, Izv. RAN. Fizika atmosfery i okeana, 47:2 (2011), 263–274
[32] Kozlov V. F., Koshel K. V., “Nekotorye osobennosti khaotizatsii pulsiruyuschego barotropnogo potoka nad osesimmetrichnoi podvodnoi vozvyshennostyu”, Izv. RAN. Fizika atmosfery i okeana, 37:3 (2001), 378–389
[33] Koshel K. V., Sokolovskiy M. A., Davies P. A., “Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle”, Fluid Dynam. Res., 40 (2008), 695–736 | DOI | MR | Zbl
[34] Zaslavsky G. M., Physics of chaos in Hamiltonian systems, 2nd ed., Imperial College Press, London, 2007, 315 pp. | Zbl