The integrable and nonintegrable motion of a vortex pair embedded inside an asymmetrical deformation flow
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 283-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

The integrable and nonintegrable motion of a vortex pair, which consists of two vortices of arbitrary intensities, embedded inside a steady and periodic external deformation flow is studied. In the general case, such an external deformation flow impacts asymmetrically on the vortex pair, which results in nonconservation of motion invariants: the linear momentum and the angular momentum. An analytical expression for the linear momentum, which gives an opportunity to reduce the initial system with 2.5 degrees of freedom to a system with 1.5 degrees of freedom, is obtained. For the steady state of a constant deformation flow the integrability of the dipole motion is shown for any initial vortices positions and intensities of vortices, and for arbitrary values of shear and rotation of the deformation flow.
Mots-clés : vortex pair
Keywords: deformation flow, integrals of motion.
@article{ND_2011_7_2_a5,
     author = {E. A. Ryzhov},
     title = {The integrable and nonintegrable motion of a vortex pair embedded inside an asymmetrical deformation flow},
     journal = {Russian journal of nonlinear dynamics},
     pages = {283--293},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a5/}
}
TY  - JOUR
AU  - E. A. Ryzhov
TI  - The integrable and nonintegrable motion of a vortex pair embedded inside an asymmetrical deformation flow
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 283
EP  - 293
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a5/
LA  - ru
ID  - ND_2011_7_2_a5
ER  - 
%0 Journal Article
%A E. A. Ryzhov
%T The integrable and nonintegrable motion of a vortex pair embedded inside an asymmetrical deformation flow
%J Russian journal of nonlinear dynamics
%D 2011
%P 283-293
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a5/
%G ru
%F ND_2011_7_2_a5
E. A. Ryzhov. The integrable and nonintegrable motion of a vortex pair embedded inside an asymmetrical deformation flow. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a5/

[1] Koshel K. V., Prants S. V., Khaoticheskaya advektsiya v okeane, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2008, 360 pp.

[2] McWilliams J. C., “The emergence of isolated, coherent vortices in turbulent flow”, J. Fluid Mech., 146 (1984), 1–43 | DOI | MR

[3] Baey J.-M., Carton X., “Vortex multipoles in two-layer rotating shallow-water flow”, J. Fluid Mech., 460 (2002), 151–175 | DOI | MR | Zbl

[4] Carton X., “Hydrodynamical modelling of oceanic vortices”, Surveys Geophys., 22 (2001), 179–263 | DOI

[5] Horton C. W., Baylor K. J., “Observations of cold-core Gulf Stream ring with an «explosive» elliptical instability”, J. Phys. Oceanogr., 21 (1991), 364–368 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[6] Kennelly M. A., Evans R. H., Joyce T. M., “Small-scale cyclones on the periphery of Gulf Stream warm-core rings”, J. Geophys. Res., 90 (1985), 8845–8857 | DOI

[7] Nof D., “Generation of ringlets”, Tellus A, 45 (1993), 299–310 | DOI

[8] Smeed D. A., “Baroclinic instability of three-layer flows: 2. Experiments with eddies”, J. Fluid Mech., 194 (1988), 233–259 | DOI | MR

[9] Thivolle-Cazat E., Sommeria J., Galmiche M., “Baroclinic instability of two-layer vortices in laboratory experiments”, J. Fluid Mech., 544 (2005), 69–97 | DOI | Zbl

[10] Roenby J., Aref H., “Chaos in body-vortex interactions”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466:2119 (2010), 1871–1891 | DOI | MR | Zbl

[11] Sutyrin G. G., Perrot X., Carton X., “Integrable motion of a vortex dipole in an axisymmetric flow”, Phys. Lett. A, 372:33 (2008), 5452–5457 | DOI | MR

[12] Aref H., “Integrable, chaos and turbulent vortex motion in two-dimensional flows”, Annu. Rev. Fluid Mech., 15 (1983), 345–389 | DOI | MR | Zbl

[13] Flierl G. R., “Isolated eddy models in geophysics”, Annu. Rev. Fluid Mech., 19 (1987), 493–530 | DOI | Zbl

[14] Hopfinger E. J., van Heijst G. J. F., “Vortices in rotating fluids”, Annu. Rev. Fluid Mech., 25 (1993), 241–289 | DOI | MR

[15] Rom-Kedar V., Leonard A., Wiggins S., “An analytical study of transport, mixing and chaos in an unsteady vortical flow”, J. Fluid Mech., 214 (1990), 347–394 | DOI | MR | Zbl

[16] Trieling R. R., van Wesenbeeck J. M. A., van Heijst G. J. F., “Dipolar vortices in a strain flow”, Phys. Fluids, 10 (1998), 144–159 | DOI | MR | Zbl

[17] Bannikova E. Yu., Kontorovich V. M., Reznik G. M., “Dinamika vikhrevoi pary v radialnom potoke”, ZhETF, 132 (2007), 615–622

[18] Perrot X., Carton X., “Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos”, Discrete Contin. Dyn. Syst. Ser. B, 11:4 (2009), 971–995 | DOI | MR | Zbl

[19] Sokolovskiy M. A., Koshel K. V., Carton X., “Baroclinic multipole evolution in shear and strain”, Geophys. Astrophys. Fluid Dyn., 105:4-5 (2011), 506–535 | DOI

[20] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2005, 368 pp.

[21] Sokolovskii M. A., Verron Zh., Dinamika vikhrevykh struktur v stratifitsirovannoi vraschayuscheisya zhidkosti, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2011, 386 pp.

[22] Kilin A. A., Borisov A. V., Mamaev I. S., “Dinamika tochechnykh vikhrei vnutri i vne krugovoi oblasti”, Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, Inst. kompyutern. issled., M.–Izhevsk, 2003, 414–440

[23] Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, Inst. kompyutern. issled., M.–Izhevsk, 2003, 704 pp.

[24] Tur A., Yanovsky V., “Point vortices with a rational necklace: New exact stationary solutions of the two-dimensional Euler equation”, Phys. Fluids, 16:8 (2004), 2877–2875 | DOI | MR

[25] Yanovsky V. V., Tur A. V., Kulik K. N., “Singularities motion equations in 2-dimensional ideal hydrodynamics of incompressible fluid”, Phys. Lett. A, 373 (2009), 2484–2487 | DOI

[26] Kulik K. N., Tur A. V., Yanovskii V. V., “Vzaimodeistvie tochechnogo i dipolnogo vikhrei v neszhimaemoi zhidkosti”, TMF, 162:3 (2010), 459–480 | MR | Zbl

[27] Reznik G. M., “Dinamika lokalizovannykh vikhrei na beta-ploskosti”, Izv. RAN. Fizika atmosfery i okeana, 46:6 (2010), 846–860 | MR

[28] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, V 10 tt.: T. 6: Gidrodinamika, Nauka, M., 1988, 736 pp.

[29] Pedlosky J., Geophysical fluid dynamics, 2nd ed., Springer, New York, 1987, 720 pp. | Zbl

[30] Gryanik V. M., Tevs M. V., “Dinamika singulyarnykh geostroficheskikh vikhrei v $N$-sloinoi modeli atmosfery (okeana)”, Izv. AN SSSR. Fizika atmosfery i okeana, 25:3 (1989), 243–256 | MR

[31] Ryzhov E. A., Koshel K. V., “Effekty khaoticheskoi advektsii v trekhsloinoi modeli okeana”, Izv. RAN. Fizika atmosfery i okeana, 47:2 (2011), 263–274

[32] Kozlov V. F., Koshel K. V., “Nekotorye osobennosti khaotizatsii pulsiruyuschego barotropnogo potoka nad osesimmetrichnoi podvodnoi vozvyshennostyu”, Izv. RAN. Fizika atmosfery i okeana, 37:3 (2001), 378–389

[33] Koshel K. V., Sokolovskiy M. A., Davies P. A., “Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle”, Fluid Dynam. Res., 40 (2008), 695–736 | DOI | MR | Zbl

[34] Zaslavsky G. M., Physics of chaos in Hamiltonian systems, 2nd ed., Imperial College Press, London, 2007, 315 pp. | Zbl