Resonant three-wave interaction of waves having a common critical layer
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 257-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the context of the weakly nonlinear approach, the leading nonlinear contribution to the development of unstable disturbances in shear flows should be made by resonant three-wave interaction, i.e., the interaction of triplets of such waves that have a common critical layer (CL), and their wave vectors form a triangle. Surprisingly, the subharmonic resonance proves to be the only such interaction that has been studied so far. The reason for this is that in many cases, the requirement of having a common CL produces too rigid selection of waves which can participate in the interaction. We show that in a broad spectral range, Holmboe waves in sharply stratified shear flows can have a common CL, and examine the evolution of small ensembles consisting of several interrelated triads of those waves. To do this, the evolution equations are derived which describe the three-wave interaction and have the form of nonlinear integral equations. Analytical and numerical methods are both used to find their solutions in different cases, and it is shown that at the nonlinear stage disturbances increase, as a rule, explosively.
Keywords: shear flow, sharp density stratification, three-wave interactions, critical layer.
@article{ND_2011_7_2_a4,
     author = {S. M. Churilov},
     title = {Resonant three-wave interaction of waves having a common critical layer},
     journal = {Russian journal of nonlinear dynamics},
     pages = {257--282},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a4/}
}
TY  - JOUR
AU  - S. M. Churilov
TI  - Resonant three-wave interaction of waves having a common critical layer
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 257
EP  - 282
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a4/
LA  - ru
ID  - ND_2011_7_2_a4
ER  - 
%0 Journal Article
%A S. M. Churilov
%T Resonant three-wave interaction of waves having a common critical layer
%J Russian journal of nonlinear dynamics
%D 2011
%P 257-282
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a4/
%G ru
%F ND_2011_7_2_a4
S. M. Churilov. Resonant three-wave interaction of waves having a common critical layer. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 257-282. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a4/

[1] Maslowe S. A., “Critical layers in shear flows”, Annu. Rev. Fluid Mech., 18 (1986), 405–432 | DOI | MR | Zbl

[2] Timofeev A. V., “Kolebaniya neodnorodnykh techenii plazmy i zhidkosti”, UFN, 102:2 (1970), 185–210

[3] Timofeev A. V., Rezonansnye yavleniya v kolebaniyakh plazmy, Fizmatlit, M., 2000, 224 pp.

[4] Andronov A. A., Fabrikant A. L., “Zatukhanie Landau, vetrovye volny i svistok”, Nelineinye volny, ed. A. V. Gaponov-Grekhov, Nauka, M., 1979, 68–104

[5] Fabrikant A., “Plasma-hydrodynamic analogy for waves and vortices in shear flows”, Sound-flow interactions, Lect. Notes Phys. Monogr., 586, eds. Auregan Y. et al., Springer, New York, 2002, 192–209

[6] Dikii L. A., Gidrodinamicheskaya ustoichivost i dinamika atmosfery, Gidrometeoizdat, L., 1976, 107 pp.

[7] Shakina N. P., Gidrodinamicheskaya neustoichivost v atmosfere, Gidrometeoizdat, L., 1990, 310 pp.

[8] Zakharov V. E., Kuznetsov E. A., “Gamiltonovskii formalizm dlya nelineinykh voln”, UFN, 167:11 (1997), 1137–1167

[9] Churilov S. M., Shukhman I. G., “Kriticheskii sloi i nelineinaya evolyutsiya vozmuschenii v slabonadkriticheskikh sdvigovykh techeniyakh”, Izv. RAN. Fizika atmosfery i okeana, 31:4 (1995), 557–569

[10] Squire H. B., “On the stability of three-dimensional disturbances of viscous flow between parallel walls”, Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 142 (1933), 621–628 | DOI | Zbl

[11] Goldstein M. E., “The role of nonlinear critical layers in boundary layer transition”, Philos. Trans. R. Soc. London Ser. A Math. Phys. Eng. Sci., 352 (1995), 425–442 | DOI | Zbl

[12] Holmboe J., “On the behaviour of symmetric waves in stratified shear layers”, Geofysiske Publikasjoner, 24 (1962), 67–112

[13] Carpenter J. R., Tedford E. W., Rahmani M., Lawrence G. A., “Holmboe wave fields in simulation and experiment”, J. Fluid Mech., 648 (2010), 205–223 | DOI | MR | Zbl

[14] Churilov S. M., “Ob ustoichivosti stratifitsirovannykh sdvigovykh techenii s monotonnym profilem skorosti bez tochek peregiba”, Izv. RAN. Fizika atmosfery i okeana, 40:6 (2004), 809–820 | MR

[15] Churilov S. M., “Stability analysis of stratified shear flows with a monotonic velocity profile without inflection points”, J. Fluid Mech., 539 (2005), 25–55 | DOI | MR | Zbl

[16] Churilov S. M., “Stability analysis of stratified shear flows with a monotonic velocity profile without inflection points: P. 2. Continuous density variation”, J. Fluid Mech., 617 (2008), 301–326 | DOI | MR | Zbl

[17] Churilov S. M., “O trekhmernom kharaktere neustoichivosti stratifitsirovannykh sdvigovykh techenii v sredakh s bolshim chislom Prandtlya”, Izv. RAN. Fizika atmosfery i okeana, 46:2 (2010), 176–186 | Zbl

[18] Smyth W. D., Peltier W. R., “Three-dimensional primary instabilities of a stratified, dissipative, parallel flow”, Geophys. Astrophys. Fluid Dyn., 52 (1990), 249–261 | DOI | MR

[19] Craik A. D. D., Wave interactions and fluid flows, Cambridge Univ. Press, Cambridge, 1985, 325 pp. | MR | Zbl

[20] Wu X., Stewart P. A., “Interaction of phase-locked modes: A new mechanism for the rapid growth of three-dimensional disturbances”, J. Fluid Mech., 316 (1996), 335–372 | DOI | MR | Zbl

[21] Wu X., Stewart P. A., Cowley S. J., “On the catalytic role of the phase-locked interaction of Tollmien–Schlichting waves in boundary-layer transition”, J. Fluid Mech., 590 (2007), 265–294 | MR | Zbl

[22] Goldstein M. E., Lee S. S., “Fully coupled resonant-triad interaction in an adverse-pressure-gradient boundary-layer”, J. Fluid Mech., 245 (1992), 523–551 | DOI | MR | Zbl

[23] Wundrow D. W., Hultgren L. S., Goldstein M. E., “Interaction of oblique instability waves with a nonlinear plane wave”, J. Fluid Mech., 264 (1994), 343–372 | DOI | MR | Zbl

[24] Churilov S. M., “Nonlinear stage of instability development in a stratified shear flow with an inflectionfree velocity profile”, Phys. Fluids, 21 (2009), 074101, 13 pp. | DOI | Zbl

[25] Churilov S. M., “Nelineinaya evolyutsiya neustoichivykh trekhmernykh vozmuschenii v rezko stratifitsirovannom sdvigovom techenii bez tochek peregiba na profile skorosti”, Nelineinaya dinamika, 5:2 (2009), 159–182

[26] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973, 294 pp.