Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_2_a2, author = {O. V. Pochinka}, title = {Necessary and sufficient conditions for topological classification of {Morse--Smale} cascades on 3-manifolds}, journal = {Russian journal of nonlinear dynamics}, pages = {227--238}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a2/} }
TY - JOUR AU - O. V. Pochinka TI - Necessary and sufficient conditions for topological classification of Morse--Smale cascades on 3-manifolds JO - Russian journal of nonlinear dynamics PY - 2011 SP - 227 EP - 238 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a2/ LA - ru ID - ND_2011_7_2_a2 ER -
%0 Journal Article %A O. V. Pochinka %T Necessary and sufficient conditions for topological classification of Morse--Smale cascades on 3-manifolds %J Russian journal of nonlinear dynamics %D 2011 %P 227-238 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a2/ %G ru %F ND_2011_7_2_a2
O. V. Pochinka. Necessary and sufficient conditions for topological classification of Morse--Smale cascades on 3-manifolds. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a2/
[1] Afpaimovich V. S., Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Mopsa–Smeila”, Tr. Mosk. mat. o-va, 28, 1973, 181–214 | MR | Zbl
[2] Andponov A. A., Pontpyagin L. S., “Gpubye sistemy”, Dokl. AN SSSP, 14:5 (1937), 247–250 | Zbl
[3] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh: Ch. 1”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauchn. trudov, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1984, 22–38
[4] Bezdenezhnykh A. N., Grines V. Z., “Realizatsiya gradientnopodobnykh diffeomorfizmov dvumernykh mnogoobrazii”, Differentsialnye i integralnye uravneniya, Sb. nauchn. trudov, ed. N. F. Otrokov, GGU, Gorkii, 1985, 33–37
[5] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh: Ch. 2”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauchn. trudov, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1987, 24–32
[6] Bonatti Ch., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl
[7] Bonatti Ch., Grines V., Medvedev V., Pecou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 2004, no. 43, 369–391 | DOI | MR | Zbl
[8] Bonatti Kh., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Dokl. RAN, 396:4 (2004), 439–442 | MR | Zbl
[9] Bonatti Kh., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | Zbl
[10] Bonatti Ch., Grines V., Pochinka O., “Classification of Morse–Smale diffeomorphisms with the chain of saddles on 3-manifolds”, Foliations 2005, World Sci., Hackensack (NJ), 2006, 121–147 | MR
[11] Bonatti Ch., Paoluzzi L., “3-manifolds which are orbit spaces of diffeomorphisms”, Topology, 47 (2008), 71–100 | DOI | MR | Zbl
[12] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomopfizmov Mopsa–Smeila s konechnym mnozhestvom getepoklinicheskikh tpaektopii na povepkhnostyakh”, Matem. zametki, 54:3 (1993), 3–17
[13] Grines V. Z., Gurevich E. Ya., “O diffeomorfizmakh Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei trekh”, Dokl. RAN, 416:1 (2007), 15–17 | MR | Zbl
[14] Grines V. Z., Gurevich E. Ya., Medvedev V. S., “Graf Peikshoto diffeomorfizmov Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei trekh”, Tr. MIAN, 261, 2008, 61–86 | MR
[15] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., Pochinka O. V., “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Tr. MIAN, 271, 2010, 111–133
[16] Leontovich E. A., Maiep A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. AN SSSP, 103:4 (1955), 557–560 | MR | Zbl
[17] Maiep A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchenye zapiski Gork. un-ta, 1939, no. 12, 215–229
[18] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matem. sb., 189:8 (1998), 93–140 | MR | Zbl
[19] Palis J., “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR
[20] Palis J., Smale S., “Structural stability theorems”, Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., 14, AMS, Providence, R.I., 1970, 223–231 ; Pali Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika, 13:2 (1969), 145–155 | MR
[21] Peixoto M., “On the classification of flows on two-manifolds”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil, 1971), Acad. Press, New York–London, 1973, 389–419 | MR
[22] Pilyugin S. Yu., “Fazovye diagrammy, opredelyayuschie sistemy Morsa–Smeila bez periodicheskikh traektorii na sferakh”, Differentsialnye uravneniya, 14:2 (1978), 245–254 | MR
[23] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl
[24] Smeil S., “Neravenstva Morsa dlya dinamicheskikh sistem”, Matematika, 11:4 (1967), 79–87 | MR
[25] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Matem. sb., 181:2 (1990), 212–239