Necessary and sufficient conditions for topological classification of Morse--Smale cascades on 3-manifolds
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 227-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper class $MS(M^3)$ of Morse–Smale diffeomorphisms (cascades) given on connected closed orientable $3$-manifolds are considered. For a diffeomorphism $f\in MS(M^3)$ it is introduced a notion scheme $S_f$, which contains an information on the periodic data of the cascade and a topology of embedding of the sepsrstrices of the saddle points. It is established that necessary and sufficient condition for topological conjugacy of diffeomorphisms $f,f'\in MS(M^3)$ is the equivalence of the schemes $S_f$$S_{f'}$.
Keywords: Morse–Smale diffeomorphism (cascade), topological conjugacy
Mots-clés : space orbit.
@article{ND_2011_7_2_a2,
     author = {O. V. Pochinka},
     title = {Necessary and sufficient conditions for topological classification of {Morse--Smale} cascades on 3-manifolds},
     journal = {Russian journal of nonlinear dynamics},
     pages = {227--238},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a2/}
}
TY  - JOUR
AU  - O. V. Pochinka
TI  - Necessary and sufficient conditions for topological classification of Morse--Smale cascades on 3-manifolds
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 227
EP  - 238
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a2/
LA  - ru
ID  - ND_2011_7_2_a2
ER  - 
%0 Journal Article
%A O. V. Pochinka
%T Necessary and sufficient conditions for topological classification of Morse--Smale cascades on 3-manifolds
%J Russian journal of nonlinear dynamics
%D 2011
%P 227-238
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a2/
%G ru
%F ND_2011_7_2_a2
O. V. Pochinka. Necessary and sufficient conditions for topological classification of Morse--Smale cascades on 3-manifolds. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a2/

[1] Afpaimovich V. S., Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Mopsa–Smeila”, Tr. Mosk. mat. o-va, 28, 1973, 181–214 | MR | Zbl

[2] Andponov A. A., Pontpyagin L. S., “Gpubye sistemy”, Dokl. AN SSSP, 14:5 (1937), 247–250 | Zbl

[3] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh: Ch. 1”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauchn. trudov, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1984, 22–38

[4] Bezdenezhnykh A. N., Grines V. Z., “Realizatsiya gradientnopodobnykh diffeomorfizmov dvumernykh mnogoobrazii”, Differentsialnye i integralnye uravneniya, Sb. nauchn. trudov, ed. N. F. Otrokov, GGU, Gorkii, 1985, 33–37

[5] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh: Ch. 2”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauchn. trudov, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1987, 24–32

[6] Bonatti Ch., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl

[7] Bonatti Ch., Grines V., Medvedev V., Pecou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 2004, no. 43, 369–391 | DOI | MR | Zbl

[8] Bonatti Kh., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Dokl. RAN, 396:4 (2004), 439–442 | MR | Zbl

[9] Bonatti Kh., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | Zbl

[10] Bonatti Ch., Grines V., Pochinka O., “Classification of Morse–Smale diffeomorphisms with the chain of saddles on 3-manifolds”, Foliations 2005, World Sci., Hackensack (NJ), 2006, 121–147 | MR

[11] Bonatti Ch., Paoluzzi L., “3-manifolds which are orbit spaces of diffeomorphisms”, Topology, 47 (2008), 71–100 | DOI | MR | Zbl

[12] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomopfizmov Mopsa–Smeila s konechnym mnozhestvom getepoklinicheskikh tpaektopii na povepkhnostyakh”, Matem. zametki, 54:3 (1993), 3–17

[13] Grines V. Z., Gurevich E. Ya., “O diffeomorfizmakh Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei trekh”, Dokl. RAN, 416:1 (2007), 15–17 | MR | Zbl

[14] Grines V. Z., Gurevich E. Ya., Medvedev V. S., “Graf Peikshoto diffeomorfizmov Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei trekh”, Tr. MIAN, 261, 2008, 61–86 | MR

[15] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., Pochinka O. V., “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Tr. MIAN, 271, 2010, 111–133

[16] Leontovich E. A., Maiep A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. AN SSSP, 103:4 (1955), 557–560 | MR | Zbl

[17] Maiep A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchenye zapiski Gork. un-ta, 1939, no. 12, 215–229

[18] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matem. sb., 189:8 (1998), 93–140 | MR | Zbl

[19] Palis J., “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR

[20] Palis J., Smale S., “Structural stability theorems”, Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., 14, AMS, Providence, R.I., 1970, 223–231 ; Pali Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika, 13:2 (1969), 145–155 | MR

[21] Peixoto M., “On the classification of flows on two-manifolds”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil, 1971), Acad. Press, New York–London, 1973, 389–419 | MR

[22] Pilyugin S. Yu., “Fazovye diagrammy, opredelyayuschie sistemy Morsa–Smeila bez periodicheskikh traektorii na sferakh”, Differentsialnye uravneniya, 14:2 (1978), 245–254 | MR

[23] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[24] Smeil S., “Neravenstva Morsa dlya dinamicheskikh sistem”, Matematika, 11:4 (1967), 79–87 | MR

[25] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Matem. sb., 181:2 (1990), 212–239