Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_2_a0, author = {O. I. Moskalenko and A. A. Koronovskii and S. A. Shurygina}, title = {The behavior of nonlinear systems near the boundary of noise-induced synchronization}, journal = {Russian journal of nonlinear dynamics}, pages = {197--208}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a0/} }
TY - JOUR AU - O. I. Moskalenko AU - A. A. Koronovskii AU - S. A. Shurygina TI - The behavior of nonlinear systems near the boundary of noise-induced synchronization JO - Russian journal of nonlinear dynamics PY - 2011 SP - 197 EP - 208 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a0/ LA - ru ID - ND_2011_7_2_a0 ER -
%0 Journal Article %A O. I. Moskalenko %A A. A. Koronovskii %A S. A. Shurygina %T The behavior of nonlinear systems near the boundary of noise-induced synchronization %J Russian journal of nonlinear dynamics %D 2011 %P 197-208 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a0/ %G ru %F ND_2011_7_2_a0
O. I. Moskalenko; A. A. Koronovskii; S. A. Shurygina. The behavior of nonlinear systems near the boundary of noise-induced synchronization. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a0/
[1] Manneville P., Pomeau Y., “Different ways to turbulence in dissipative dynamical systems”, Phys. D, 1:2 (1980), 167–241 | DOI | MR
[2] Berge P., Pomeau Y., Vidal C., L'ordre dans le chaos, Hermann, Paris, 1988, 353 pp.
[3] Dubois M., Rubio M., Berge P., “Experimental evidence of intermiasttencies associated with a subharmonic bifurcation”, Phys. Rev. Lett., 51 (1983), 1446–1449 | DOI | MR
[4] Pikovsky A. S., Osipov G. V., Rosenblum M. G., Zaks M., Kurths J., “Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization”, Phys. Rev. Lett., 79:1 (1997), 47–50 | DOI
[5] Hramov A. E., Koronovskii A. A., Kurovskaya M. K., Boccaletti S., “Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization”, Phys. Rev. Lett., 97 (2006), 114101, 4 pp. | DOI
[6] Hramov A. E., Koronovskii A. A., “Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators”, Europhys. Lett., 70:2 (2005), 169–175 | DOI | MR
[7] Boccaletti S., Valladares D. L., “Characterization of intermittent lag synchronization”, Phys. Rev. E, 62:5 (2000), 7497–7500 | DOI
[8] Lee K. J., Kwak Y., Lim T. K., “Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators”, Phys. Rev. Lett., 81:2 (1998), 321–324 | DOI
[9] Toral R., Mirasso C. R., Hernandez-Garcia E., Piro O., “Analytical and numerical studies of noiseinduced synchronization of chaotic systems”, Chaos, 11:3 (2001), 665–673 | DOI | Zbl
[10] Zhou C. S., Kurths J., “Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model of thermally sensitive neurons”, Chaos, 13:1 (2003), 401–409 | DOI
[11] Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I., “Generalized synchronization of chaos in directionally coupled chaotic systems”, Phys. Rev. E, 51:2 (1995), 980–994 | DOI
[12] Hramov A. E., Koronovskii A. A., “Generalized synchronization: A modified system approach”, Phys. Rev. E, 71:6 (2005), 067201, 4 pp. | DOI | MR
[13] Hramov A. E., Koronovskii A. A., Popov P. V., “Generalized synchronization in coupled Ginzburg–Landau equations and mechanisms of its arising”, Phys. Rev. E, 72:3 (2005), 037201, 4 pp. | DOI
[14] Hramov A. E., Koronovskii A. A., Moskalenko O. I., “Are generalized synchronization and noiseinduced synchronization identical types of synchronous behavior of chaotic oscillators?”, Phys. Lett. A, 354:5-6 (2006), 423–427 | DOI
[15] Koronovskii A. A., Moskalenko O. I., Trubetskov D. I., Khramov A. E., “Obobschennaya sinkhronizatsiya i sinkhronizatsiya, indutsirovannaya shumom, — edinyi tip povedeniya svyazannykh khaoticheskikh sistem”, Dokl. RAN, 407:6 (2006), 761–765 | Zbl
[16] Fahy S., Hamann D. R., “Transition from chaotic to nonchaotic behavior in randomly driven systems”, Phys. Rev. Lett., 69:5 (1992), 761–764 | DOI
[17] Maritan A., Banavar J. R., “Chaos, noise and synchronization”, Phys. Rev. Lett., 72:10 (1994), 1451–1454 | DOI
[18] Pikovsky A. S., “Comment on «Chaos, noise, and synchronization»”, Phys. Rev. Lett., 73:21 (1994), 2931–2931 | DOI
[19] Longa L., Curado E. M. F., Oliveira F. A., “Roundoff-induced coalescence of chaotic trajectories”, Phys. Rev. E, 54:3 (1996), R2201–R2204 | DOI
[20] Zhou C. S., Lai C. H., “Synchronization with positive conditional Lyapunov exponents”, Phys. Rev. E, 58:4 (1998), 5188–5191 | DOI
[21] Kim C. M., “Mechanism of chaos synchronization and on–off intermittency”, Phys. Rev. E, 56:3 (1997), 3697–3700 | DOI
[22] Pyragas K., “Weak and strong synchronization of chaos”, Phys. Rev. E, 54:5 (1996), R4508–R4511 | DOI
[23] Moskalenko O. I., Ovchinnikov A. A., “Issledovanie vliyaniya shuma na obobschennuyu khaoticheskuyu sinkhronizatsiyu v dissipativno svyazannykh dinamicheskikh sistemakh: ustoichivost sinkhronnogo rezhima po otnosheniyu k vneshnim shumam i vozmozhnye prakticheskie prilozheniya”, Radiotekhnika i elektronika, 55:4 (2010), 436–449
[24] Kuznetsov S. P., Dinamicheskii khaos: Kurs lektsii., Fizmatlit, M., 2001, 296 pp.
[25] Pyragas K., “Properties of generalized synchronization of chaos (review)”, Nonlinear Analysis: Modelling and Control (Vilnius, IMI), 1998, no. 3, 101–129 | Zbl
[26] Koronovskii A. A., Moskalenko O. I., Khramov A. E., “O mekhanizmakh, privodyaschikh k ustanovleniyu rezhima obobschennoi sinkhronizatsii”, ZhTF, 76:2 (2006), 1–9 | MR