The behavior of nonlinear systems near the boundary of noise-induced synchronization
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 197-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

The intermittent behavior near the boundary of the noise-induced synchronization regime is studied. «On–off» intermittency is shown to take place in this case. The observed phenomenon is illustrated by considering both model systems with discrete time and flow dynamical systems being under influence of the common source of noise.
Keywords: nonlinear systems, intermittency, noise-induced synchronization, dynamical chaos.
Mots-clés : noise
@article{ND_2011_7_2_a0,
     author = {O. I. Moskalenko and A. A. Koronovskii and S. A. Shurygina},
     title = {The behavior of nonlinear systems near the boundary of noise-induced synchronization},
     journal = {Russian journal of nonlinear dynamics},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a0/}
}
TY  - JOUR
AU  - O. I. Moskalenko
AU  - A. A. Koronovskii
AU  - S. A. Shurygina
TI  - The behavior of nonlinear systems near the boundary of noise-induced synchronization
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 197
EP  - 208
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a0/
LA  - ru
ID  - ND_2011_7_2_a0
ER  - 
%0 Journal Article
%A O. I. Moskalenko
%A A. A. Koronovskii
%A S. A. Shurygina
%T The behavior of nonlinear systems near the boundary of noise-induced synchronization
%J Russian journal of nonlinear dynamics
%D 2011
%P 197-208
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a0/
%G ru
%F ND_2011_7_2_a0
O. I. Moskalenko; A. A. Koronovskii; S. A. Shurygina. The behavior of nonlinear systems near the boundary of noise-induced synchronization. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a0/

[1] Manneville P., Pomeau Y., “Different ways to turbulence in dissipative dynamical systems”, Phys. D, 1:2 (1980), 167–241 | DOI | MR

[2] Berge P., Pomeau Y., Vidal C., L'ordre dans le chaos, Hermann, Paris, 1988, 353 pp.

[3] Dubois M., Rubio M., Berge P., “Experimental evidence of intermiasttencies associated with a subharmonic bifurcation”, Phys. Rev. Lett., 51 (1983), 1446–1449 | DOI | MR

[4] Pikovsky A. S., Osipov G. V., Rosenblum M. G., Zaks M., Kurths J., “Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization”, Phys. Rev. Lett., 79:1 (1997), 47–50 | DOI

[5] Hramov A. E., Koronovskii A. A., Kurovskaya M. K., Boccaletti S., “Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization”, Phys. Rev. Lett., 97 (2006), 114101, 4 pp. | DOI

[6] Hramov A. E., Koronovskii A. A., “Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators”, Europhys. Lett., 70:2 (2005), 169–175 | DOI | MR

[7] Boccaletti S., Valladares D. L., “Characterization of intermittent lag synchronization”, Phys. Rev. E, 62:5 (2000), 7497–7500 | DOI

[8] Lee K. J., Kwak Y., Lim T. K., “Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators”, Phys. Rev. Lett., 81:2 (1998), 321–324 | DOI

[9] Toral R., Mirasso C. R., Hernandez-Garcia E., Piro O., “Analytical and numerical studies of noiseinduced synchronization of chaotic systems”, Chaos, 11:3 (2001), 665–673 | DOI | Zbl

[10] Zhou C. S., Kurths J., “Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model of thermally sensitive neurons”, Chaos, 13:1 (2003), 401–409 | DOI

[11] Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I., “Generalized synchronization of chaos in directionally coupled chaotic systems”, Phys. Rev. E, 51:2 (1995), 980–994 | DOI

[12] Hramov A. E., Koronovskii A. A., “Generalized synchronization: A modified system approach”, Phys. Rev. E, 71:6 (2005), 067201, 4 pp. | DOI | MR

[13] Hramov A. E., Koronovskii A. A., Popov P. V., “Generalized synchronization in coupled Ginzburg–Landau equations and mechanisms of its arising”, Phys. Rev. E, 72:3 (2005), 037201, 4 pp. | DOI

[14] Hramov A. E., Koronovskii A. A., Moskalenko O. I., “Are generalized synchronization and noiseinduced synchronization identical types of synchronous behavior of chaotic oscillators?”, Phys. Lett. A, 354:5-6 (2006), 423–427 | DOI

[15] Koronovskii A. A., Moskalenko O. I., Trubetskov D. I., Khramov A. E., “Obobschennaya sinkhronizatsiya i sinkhronizatsiya, indutsirovannaya shumom, — edinyi tip povedeniya svyazannykh khaoticheskikh sistem”, Dokl. RAN, 407:6 (2006), 761–765 | Zbl

[16] Fahy S., Hamann D. R., “Transition from chaotic to nonchaotic behavior in randomly driven systems”, Phys. Rev. Lett., 69:5 (1992), 761–764 | DOI

[17] Maritan A., Banavar J. R., “Chaos, noise and synchronization”, Phys. Rev. Lett., 72:10 (1994), 1451–1454 | DOI

[18] Pikovsky A. S., “Comment on «Chaos, noise, and synchronization»”, Phys. Rev. Lett., 73:21 (1994), 2931–2931 | DOI

[19] Longa L., Curado E. M. F., Oliveira F. A., “Roundoff-induced coalescence of chaotic trajectories”, Phys. Rev. E, 54:3 (1996), R2201–R2204 | DOI

[20] Zhou C. S., Lai C. H., “Synchronization with positive conditional Lyapunov exponents”, Phys. Rev. E, 58:4 (1998), 5188–5191 | DOI

[21] Kim C. M., “Mechanism of chaos synchronization and on–off intermittency”, Phys. Rev. E, 56:3 (1997), 3697–3700 | DOI

[22] Pyragas K., “Weak and strong synchronization of chaos”, Phys. Rev. E, 54:5 (1996), R4508–R4511 | DOI

[23] Moskalenko O. I., Ovchinnikov A. A., “Issledovanie vliyaniya shuma na obobschennuyu khaoticheskuyu sinkhronizatsiyu v dissipativno svyazannykh dinamicheskikh sistemakh: ustoichivost sinkhronnogo rezhima po otnosheniyu k vneshnim shumam i vozmozhnye prakticheskie prilozheniya”, Radiotekhnika i elektronika, 55:4 (2010), 436–449

[24] Kuznetsov S. P., Dinamicheskii khaos: Kurs lektsii., Fizmatlit, M., 2001, 296 pp.

[25] Pyragas K., “Properties of generalized synchronization of chaos (review)”, Nonlinear Analysis: Modelling and Control (Vilnius, IMI), 1998, no. 3, 101–129 | Zbl

[26] Koronovskii A. A., Moskalenko O. I., Khramov A. E., “O mekhanizmakh, privodyaschikh k ustanovleniyu rezhima obobschennoi sinkhronizatsii”, ZhTF, 76:2 (2006), 1–9 | MR