From the Editor
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 151-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

@misc{ND_2011_7_1_a8,
     title = {From the {Editor}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {151--152},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a8/}
}
TY  - JOUR
TI  - From the Editor
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 151
EP  - 152
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a8/
LA  - ru
ID  - ND_2011_7_1_a8
ER  - 
%0 Journal Article
%T From the Editor
%J Russian journal of nonlinear dynamics
%D 2011
%P 151-152
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a8/
%G ru
%F ND_2011_7_1_a8
From the Editor. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 151-152. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a8/

[1] von Helmholtz H., Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik, Vieweg, Braunschweig, 1863, 600 pp.; Gelmgolts G., Uchenie o slukhovykh oschuscheniyakh kak fiziologicheskaya osnova teorii muzyki, SPb, 1875, 595 pp.

[2] Jeans J. H., Science and music, Dover, New York, 1968, 273 pp.

[3] Nierhaus G., Algorithmic composition: Paradigms of automated music generation, Springer, Berlin, 2009, 287 pp.

[4] Analysis, synthesis, and perception of musical sounds, ed. J. W. Beauchamp, Springer, New York, 2007, 328 pp.

[5] Benson D., A mathematical offering, Cambridge Univ. Press, Cambridge, 2006, 426 pp.

[6] Beran J., Statistics in musicology, Chapman Hall; CRC, Boca Raton, FL, 2004, 299 pp.

[7] Dorrell Ph., What is music?: Solving a scientific mystery, 2005, 324 pp. Lulu.com

[8] Garland T. H., Kahn Ch. V., Math and music: Harmonious connections, Dale Seymour Publ., Palo Alto, CA, 1995, 162 pp.

[9] Haluka J., The mathematical theory of tone systems, CRC Press, Boca Raton, FL, 2003, 380 pp.

[10] Harkleroad L., The math behind the music, Cambridge Univ. Press, Cambridge, 2006, 158 pp.

[11] Johnson T. A., Foundations of diatonic theory: A mathematically based approach to music fundamentals, Scarecrow Press, Lanham, MD, 2008, 195 pp.

[12] Loy G., Musimathics: A guided tour of the mathematics of music, 1, 2, MIT Press, Cambridge, MA, 2007, 482 pp.; 562 pp.

[13] Madden Ch. B., Fib and Phi in music: The golden proportion in musical form, High Art Press, Salt Lake City, 2005, 384 pp.

[14] Madden Ch. B., Fractals in music: Introductory mathematics for musical analysis, High Art Press, Salt Lake City, 1999, 224 pp.

[15] G. Assayag, H. G. Feichtinger, J. F. Rodrigues (Eds.), Mathematics and music: a Diderot Mathematical Forum, Springer, Berlin, 2002, 288 pp.

[16] J. Fauvel, R. Flood, R. Wilson (Eds.), Music and mathematics: From Pythagoras to fractals, Oxford Univ. Press, Oxford, 2006, 200 pp.

[17] J. Douthett, M. M. Hyde, Ch. J. Smith (Eds.), Music theory and mathematics: Chords, collections, and transformations, Eastman Studies in Music, 50, Univ. Rochester Press, Rochester, NY, 2008, 262 pp.

[18] Olson H. F., Music, physics and engineering, Rev. ed., Dover, New York, 1967, 460 pp.

[19] Rothstein E., The inner life of music and mathematics, Univ. Chicago Press, Chicago, 2006, 263 pp.

[20] Sethares W. A., Tuning, timbre, spectrum, scale, 2nd ed., Springer, London, 2004, 430 pp.

[21] Taylor Ch., Exploring music: The science and technology of tones and tunes, Taylor Francis, London, 1992, 255 pp.

[22] Temperley D., The cognition of basic musical structures, MIT Press, Cambridge, MA, 2001, 360 pp.

[23] Temperley D., Music and probability, MIT Press, Cambridge, MA, 2007, 256 pp.

[24] Wardhaugh B., Music, experiment and mathematics in England, 1653–1705, Ashgate, Aldershot, 2008, 209 pp.

[25] Xenakis I., Formalized music: Thought and mathematics in composition, Harmonologia Ser., 6, Pendragon Press, Hillsdale, NY, 1992, 490 pp.