Frictional coupling between sliding and spinning motion
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 139-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The tangential motion at the contact of two solid objects is studied. It consists of a sliding and a spinning degree of freedom (no rolling). We show that the friction force and torque are inherently coupled. As a simple test system, a sliding and spinning disk on a horizontal flat surface is considered. We calculate, and also measure, how the disk slows down and find that it always stops its sliding and spinning motion at the same moment.We discuss the impact of this coupling between friction force and torque on the physics of granular materials.
@article{ND_2011_7_1_a6,
     author = {Z. Farkas and G. Bartels and D. E. Wolf and T. Unger},
     title = {Frictional coupling between sliding and spinning motion},
     journal = {Russian journal of nonlinear dynamics},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a6/}
}
TY  - JOUR
AU  - Z. Farkas
AU  - G. Bartels
AU  - D. E. Wolf
AU  - T. Unger
TI  - Frictional coupling between sliding and spinning motion
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 139
EP  - 146
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a6/
LA  - ru
ID  - ND_2011_7_1_a6
ER  - 
%0 Journal Article
%A Z. Farkas
%A G. Bartels
%A D. E. Wolf
%A T. Unger
%T Frictional coupling between sliding and spinning motion
%J Russian journal of nonlinear dynamics
%D 2011
%P 139-146
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a6/
%G ru
%F ND_2011_7_1_a6
Z. Farkas; G. Bartels; D. E. Wolf; T. Unger. Frictional coupling between sliding and spinning motion. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a6/

[1] Kadau D., Bartels G., Brendel L., Wolf D. E., “Pore stabilization in cohesive granular systems”, Phase Transit. Crit. Phenom., 76 (2003), 315–331

[2] Knight J. B., Fandrich C. G., Lau C. N., Jaeger H. M., Nagel S. R., “Density relaxation in a vibrated granular material”, Phys. Rev. E, 51 (1995), 3957–3963

[3] Nicodemi M., Coniglio A., Herrmann H. J., “Frustration and slow dynamics of granular packings”, Phys. Rev. E, 55 (1997), 3962–3969

[4] Handbook of mathematical functions, eds. M. Abramowitz, I. A. Stegun, Dover, New York, 1965, 1006 pp.

[5] Gerhart P. M., Gross R. J., Hochstein J. I., Fundamentals of fluid mechanics, 2nd ed., Addison-Wesley, Reading, MA, 1992

[6] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, V 10-ti tt., v. 7, Teoriya uprugosti, 5-oe izd., Fizmatlit, M., 2001, 259 pp.

[7] Brilliantov N. V., Pschel Th., “Rolling friction of a soft sphere on a hard plane”, Europhys. Lett., 42 (1998), 511–516

[8] Pschel Th., Schwager Th., Brilliantov N. V., “Rolling of a hard cylinder on a viscous plane”, Eur. Phys. J. B, 10 (1999), 169–174

[9] Ramrez R., Pschel Th., Brilliantov N. V., Schwager Th., “Coefficient of restitution of colliding viscoelastic spheres”, Phys. Rev. E, 60 (1999), 4465–4472