Stability of new relative equilibria of the system of three point vortices in a circular domain
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 119-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a topological approach to the search and stability analysis of relative equilibria of three point vortices of equal intensities. It is shown that the equations of motion can be reduced by one degree of freedom. We have found two new stationary configurations (isosceles and non-symmetrical collinear) and studied their bifurcations and stability.
Keywords: point vortex; reduction; bifurcational diagram; relative equilibriums; stability; periodic solutions.
@article{ND_2011_7_1_a5,
     author = {A. V. Borisov and I. S. Mamaev and A. V. Vas'kina},
     title = {Stability of new relative equilibria of the system of three point vortices in a circular domain},
     journal = {Russian journal of nonlinear dynamics},
     pages = {119--138},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a5/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
AU  - A. V. Vas'kina
TI  - Stability of new relative equilibria of the system of three point vortices in a circular domain
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 119
EP  - 138
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a5/
LA  - ru
ID  - ND_2011_7_1_a5
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%A A. V. Vas'kina
%T Stability of new relative equilibria of the system of three point vortices in a circular domain
%J Russian journal of nonlinear dynamics
%D 2011
%P 119-138
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a5/
%G ru
%F ND_2011_7_1_a5
A. V. Borisov; I. S. Mamaev; A. V. Vas'kina. Stability of new relative equilibria of the system of three point vortices in a circular domain. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 119-138. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a5/

[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost: II. Otnositelnye ravnovesiya”, Regul. Chaotic Dyn. (prinyatno k pechati)

[2] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, NITs «RKhD», Inst. kompyutern. issled., M.–Izhevsk, 2005, 368 pp.

[3] Borisov A. V., Mamaev I. S., Kilin A. A., “Dinamika tochechnykh vikhrei vnutri i vne krugovoi oblasti”, Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, Inst. kompyutern. issled., M.–Izhevsk, 2003, 414–440

[4] Borisov A. V., Bolsinov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (2010), 71–132

[5] Gurzhii A. A., Prokopovich I. S., “Advektsiya passivnoi zhidkosti v pole skorosti dvukh tochechnykh vikhrei v krugovoi oblasti”, Vestn. Khark. nats. un-ta. Ser. Matem. modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, 2009, no. 847, 123–130

[6] Katok S. B., “Bifurkatsionnye mnozhestva i integralnye mnogoobraziya v zadache o dvizhenii tyazhelogo tverdogo tela”, UMN, 27:2 (1972), 126–132

[7] Kurakin L. G., “Ustoichivost, rezonansy i neustoichivost pravilnykh vikhrevykh mnogougolnikov vnutri krugovoi oblasti”, Dokl. RAN, 399:1 (2004), 52–55

[8] Kurakin L. G., “Ob ustoichivosti tomsonovskikh vikhrevykh konfiguratsii vnutri krugovoi oblasti”, Nelineinaya dinamika, 5:3 (2009), 295–317

[9] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[10] Markeev A. P., Teoreticheskaya mekhanika, Uchebn. posobie dlya vuzov, CheRo, M., 1999, 572 pp.

[11] Meleshko V. V., Konstantinov M.Yu., Dinamika vikhrevykh struktur, Naukova dumka, Kiev, 1993, 280 pp.

[12] Mozer Yu., “Lektsii o gamiltonovykh sistemakh”, KAM-teoriya i problemy ustoichivosti, ed. Yu. Mozer, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 141–198

[13] Smeil S., “Topologiya i mekhanika”, UMN, 27:2 (1972), 77–133

[14] Tatarinov Ya. V., “Portrety klassicheskikh integralov zadachi o vraschenii tverdogo tela vokrug nepodvizhnoi tochki”, Vestn. Mosk. un-ta, 1974, no. 6, 99–105

[15] Albouy A., “Symétrie des configurations centrales de quatre corps”, C. R. Acad. Sci. Paris, sér. 1, 320 (1995), 217–220; Albui A., “Simmetriya tsentralnykh konfiguratsii chetyrekh tel”, Otnositelnye ravnovesiya: Periodicheskie resheniya, Sb. st., V. V. Kozlov (gl. red.), NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2006, 143–148

[16] Albouy A., “The symmetric central configurations of four equal masses”, Contemp. Math., 198 (1996), 131–135; Albui A., “Simmetrichnye tsentralnye konfiguratsii chetyrekh ravnykh mass”, Otnositelnye ravnovesiya: Periodicheskie resheniya, Sb. st., V. V. Kozlov (gl. red.), NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2006, 149–161

[17] Arango C. A., Ezra G. S., Classical mechanics of dipolar asymmetric top molecules in collinear static electric and nonresonant linearly polarized laser fields: Energy-momentum diagrams, bifurcations and accessible configuration space, 2006, arXiv: physics/0611231v1 [physics.class-ph]

[18] Borisov A. V., Mamaev I. S., “On the problem of motion of vortex sources on a plane”, Regul. Chaotic Dyn., 11:4 (2006), 455–466

[19] Buhler O., “Statistical mechanics of strong and weak point vortices in a cylinder”, Phys. Fluids, 14:7 (2002), 2139–2149

[20] Conley C. C., Zehnder R., “Morse-type index theory for flows and periodic solutions for Hamiltonian equations”, Comm. Pure Appl. Math., 37:2 (1984), 207–253

[21] Greenhill A. G., “Plane vortex motion”, Quart. J. Pure Appl. Math., 15:58 (1877/78), 10–27

[22] Hampton M., Moeckel R., “Finiteness of stationary configurations of the four-vortex problem”, Trans. Amer. Math. Soc., 361 (2009), 1317–1332

[23] Hardin J. C., Mason J. P., “Periodic motion of two and four vortices in a cylindrical pipe”, Phys. Fluids, 27:7 (1984), 1583–1589

[24] Havelock T. H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag., 11:70 (1931), 617–633

[25] Helmholtz H., “Über Integrale hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen”, J. Rein. Angew. Math., 55 (1858), 25–55; Gelmgolts G., Osnovy vikhrevoi teorii, M.–IKI, Izhevsk, 2002, 82 pp.

[26] Kimura Y., “Motion of two point vortices in a circular domain”, J. Phys. Soc. Japan, 57:5 (1988), 1641–1649

[27] Kimura Y., Kusumoto Y., Hasimoto H., “Some particular solutions for symmetric motion of point vortices in a circular cylinder”, J. Phys. Soc. Japan, 53:9 (1984), 2988–2995

[28] Lin C.C., “On the motion of vortices in two dimensions: I, II”, Proc. Natl. Acad. Sci. USA, 27:2 (1941), 570–577; Lin C. C., On the motion of vortices in two dimensions, Univ. Toronto Press, Toronto, 1943, 39 pp.

[29] O'Neil K., “Clustered eqilibria of point vortices”, Regul. Chaotic Dyn., 2011 (prinyatno k pechati)

[30] Simakov N. N., “Dynamics of two vortices in circular domain”, Regul. Chaotic Dyn., 3:4 (1988), 87–94

[31] Shashikanth B. N., “Dissipative $N$-point-vortex models in the plane”, J. Nonlinear Sci., 20:1 (2010), 81–103

[32] Thomson J. J., A treatise on the motion of vortex rings, Macmillan, London, 1883, 124 pp.

[33] Yatsuyanagi Yu., Kiwamoto Ya., Tomita H., Sano M. M., Yoshida T., Ebisuzaki T., “Dynamics of two-sign point vortices in positive and negative temperature state”, Phys. Rev. Lett., 94 (2005), 054502, 4 pp.