Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_1_a5, author = {A. V. Borisov and I. S. Mamaev and A. V. Vas'kina}, title = {Stability of new relative equilibria of the system of three point vortices in a circular domain}, journal = {Russian journal of nonlinear dynamics}, pages = {119--138}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a5/} }
TY - JOUR AU - A. V. Borisov AU - I. S. Mamaev AU - A. V. Vas'kina TI - Stability of new relative equilibria of the system of three point vortices in a circular domain JO - Russian journal of nonlinear dynamics PY - 2011 SP - 119 EP - 138 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a5/ LA - ru ID - ND_2011_7_1_a5 ER -
%0 Journal Article %A A. V. Borisov %A I. S. Mamaev %A A. V. Vas'kina %T Stability of new relative equilibria of the system of three point vortices in a circular domain %J Russian journal of nonlinear dynamics %D 2011 %P 119-138 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a5/ %G ru %F ND_2011_7_1_a5
A. V. Borisov; I. S. Mamaev; A. V. Vas'kina. Stability of new relative equilibria of the system of three point vortices in a circular domain. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 119-138. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a5/
[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost: II. Otnositelnye ravnovesiya”, Regul. Chaotic Dyn. (prinyatno k pechati)
[2] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, NITs «RKhD», Inst. kompyutern. issled., M.–Izhevsk, 2005, 368 pp.
[3] Borisov A. V., Mamaev I. S., Kilin A. A., “Dinamika tochechnykh vikhrei vnutri i vne krugovoi oblasti”, Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, Inst. kompyutern. issled., M.–Izhevsk, 2003, 414–440
[4] Borisov A. V., Bolsinov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (2010), 71–132
[5] Gurzhii A. A., Prokopovich I. S., “Advektsiya passivnoi zhidkosti v pole skorosti dvukh tochechnykh vikhrei v krugovoi oblasti”, Vestn. Khark. nats. un-ta. Ser. Matem. modelirovanie. Informatsionnye tekhnologii. Avtomatizirovannye sistemy upravleniya, 2009, no. 847, 123–130
[6] Katok S. B., “Bifurkatsionnye mnozhestva i integralnye mnogoobraziya v zadache o dvizhenii tyazhelogo tverdogo tela”, UMN, 27:2 (1972), 126–132
[7] Kurakin L. G., “Ustoichivost, rezonansy i neustoichivost pravilnykh vikhrevykh mnogougolnikov vnutri krugovoi oblasti”, Dokl. RAN, 399:1 (2004), 52–55
[8] Kurakin L. G., “Ob ustoichivosti tomsonovskikh vikhrevykh konfiguratsii vnutri krugovoi oblasti”, Nelineinaya dinamika, 5:3 (2009), 295–317
[9] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.
[10] Markeev A. P., Teoreticheskaya mekhanika, Uchebn. posobie dlya vuzov, CheRo, M., 1999, 572 pp.
[11] Meleshko V. V., Konstantinov M.Yu., Dinamika vikhrevykh struktur, Naukova dumka, Kiev, 1993, 280 pp.
[12] Mozer Yu., “Lektsii o gamiltonovykh sistemakh”, KAM-teoriya i problemy ustoichivosti, ed. Yu. Mozer, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 141–198
[13] Smeil S., “Topologiya i mekhanika”, UMN, 27:2 (1972), 77–133
[14] Tatarinov Ya. V., “Portrety klassicheskikh integralov zadachi o vraschenii tverdogo tela vokrug nepodvizhnoi tochki”, Vestn. Mosk. un-ta, 1974, no. 6, 99–105
[15] Albouy A., “Symétrie des configurations centrales de quatre corps”, C. R. Acad. Sci. Paris, sér. 1, 320 (1995), 217–220; Albui A., “Simmetriya tsentralnykh konfiguratsii chetyrekh tel”, Otnositelnye ravnovesiya: Periodicheskie resheniya, Sb. st., V. V. Kozlov (gl. red.), NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2006, 143–148
[16] Albouy A., “The symmetric central configurations of four equal masses”, Contemp. Math., 198 (1996), 131–135; Albui A., “Simmetrichnye tsentralnye konfiguratsii chetyrekh ravnykh mass”, Otnositelnye ravnovesiya: Periodicheskie resheniya, Sb. st., V. V. Kozlov (gl. red.), NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2006, 149–161
[17] Arango C. A., Ezra G. S., Classical mechanics of dipolar asymmetric top molecules in collinear static electric and nonresonant linearly polarized laser fields: Energy-momentum diagrams, bifurcations and accessible configuration space, 2006, arXiv: physics/0611231v1 [physics.class-ph]
[18] Borisov A. V., Mamaev I. S., “On the problem of motion of vortex sources on a plane”, Regul. Chaotic Dyn., 11:4 (2006), 455–466
[19] Buhler O., “Statistical mechanics of strong and weak point vortices in a cylinder”, Phys. Fluids, 14:7 (2002), 2139–2149
[20] Conley C. C., Zehnder R., “Morse-type index theory for flows and periodic solutions for Hamiltonian equations”, Comm. Pure Appl. Math., 37:2 (1984), 207–253
[21] Greenhill A. G., “Plane vortex motion”, Quart. J. Pure Appl. Math., 15:58 (1877/78), 10–27
[22] Hampton M., Moeckel R., “Finiteness of stationary configurations of the four-vortex problem”, Trans. Amer. Math. Soc., 361 (2009), 1317–1332
[23] Hardin J. C., Mason J. P., “Periodic motion of two and four vortices in a cylindrical pipe”, Phys. Fluids, 27:7 (1984), 1583–1589
[24] Havelock T. H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag., 11:70 (1931), 617–633
[25] Helmholtz H., “Über Integrale hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen”, J. Rein. Angew. Math., 55 (1858), 25–55; Gelmgolts G., Osnovy vikhrevoi teorii, M.–IKI, Izhevsk, 2002, 82 pp.
[26] Kimura Y., “Motion of two point vortices in a circular domain”, J. Phys. Soc. Japan, 57:5 (1988), 1641–1649
[27] Kimura Y., Kusumoto Y., Hasimoto H., “Some particular solutions for symmetric motion of point vortices in a circular cylinder”, J. Phys. Soc. Japan, 53:9 (1984), 2988–2995
[28] Lin C.C., “On the motion of vortices in two dimensions: I, II”, Proc. Natl. Acad. Sci. USA, 27:2 (1941), 570–577; Lin C. C., On the motion of vortices in two dimensions, Univ. Toronto Press, Toronto, 1943, 39 pp.
[29] O'Neil K., “Clustered eqilibria of point vortices”, Regul. Chaotic Dyn., 2011 (prinyatno k pechati)
[30] Simakov N. N., “Dynamics of two vortices in circular domain”, Regul. Chaotic Dyn., 3:4 (1988), 87–94
[31] Shashikanth B. N., “Dissipative $N$-point-vortex models in the plane”, J. Nonlinear Sci., 20:1 (2010), 81–103
[32] Thomson J. J., A treatise on the motion of vortex rings, Macmillan, London, 1883, 124 pp.
[33] Yatsuyanagi Yu., Kiwamoto Ya., Tomita H., Sano M. M., Yoshida T., Ebisuzaki T., “Dynamics of two-sign point vortices in positive and negative temperature state”, Phys. Rev. Lett., 94 (2005), 054502, 4 pp.