Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2010_6_4_a9, author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev}, title = {Rolling of a homogeneous ball over a dynamically asymmetric sphere}, journal = {Russian journal of nonlinear dynamics}, pages = {869--889}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/} }
TY - JOUR AU - A. V. Borisov AU - A. A. Kilin AU - I. S. Mamaev TI - Rolling of a homogeneous ball over a dynamically asymmetric sphere JO - Russian journal of nonlinear dynamics PY - 2010 SP - 869 EP - 889 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/ LA - ru ID - ND_2010_6_4_a9 ER -
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Rolling of a homogeneous ball over a dynamically asymmetric sphere. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 869-889. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 3-e izd., Nauka, M., 1989, 472 pp. | MR
[2] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Sovr. probl. matem. Fundamentalnye napravleniya, 3, VINITI, M., 1985, 304 pp. | MR | Zbl
[3] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854
[4] Borisov A. V., Kilin A. A., Mamaev I. S., “K modeli negolonomnogo bilyarda”, Nelineinaya dinamika, 6:2 (2010), 373–385
[5] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyutern. issled., M.–Izhevsk, 2005, 576 pp. | MR
[6] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Inst. kompyutern. issled., M.–Izhevsk, 2003, 296 pp. | MR
[7] Borisov A. V., Mamaev I. S., Marikhin V. G., “Yavnoe integrirovanie odnoi negolonomnoi zadachi”, Dokl. RAN, 422:4 (2008), 475–478 | MR | Zbl
[8] Borisov A. V., Fedorov Yu. N., “O dvukh vidoizmenennykh integriruemykh zadachakh dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1995, no. 6, 102–105 | MR | Zbl
[9] Veselov A. P., Veselova L. E., “Integriruemye negolonomnye sistemy na gruppakh Li”, Matem. zametki, 44:5 (1988), 604–619 | MR
[10] Kozlov V. V., “Integralnye invarianty posle Puankare i Kartana”: E. Kartan, Integralnye invarianty, URSS, M., 1998, 215–260
[11] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[12] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udm. un-ta, Izhevsk, 1995, 429 pp. | MR | Zbl
[13] Kozlov V. V., “Tenzornye invarianty kvaziodnorodnykh sistem differentsialnykh uravnenii i asimptoticheskii metod Kovalevskoi–Lyapunova”, Matem. zametki, 51:2 (1992), 46–52 | MR | Zbl
[14] Kozlov V. V., Ramodanov S. M., “O dvizhenii izmenyaemogo tela v idealnoi zhidkosti”, PMM, 65:4 (2001), 529–601 | MR
[15] Markeev A. P., “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, MTT, 21:1 (1986), 64–65
[16] Routh E. J., Dynamics of a system of rigid bodies, 2 vols., Dover, New York, 1905 | MR
[17] Fëdorov Yu. N., “O dvizhenii tverdogo tela v sharovom podvese”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1988, no. 5, 91–93
[18] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Sobr. soch., v. 1, GITTL, M.–L., 1948, 76–101
[19] Chaplygin S. A., “O nekotorom vozmozhnom obobschenii teoremy ploschadei s primeneniem k zadache o katanii sharov”, Sobr. soch., v. 1, GITTL, M.–L., 1948, 26–56
[20] Alves J., Dias J., “Design and control of a spherical mobile robot”, J. Systems Control Engrg, 217:6 (2003), 457–467
[21] Behar A., Matthews J., Carsey F., Jones J., “NASA/JPL Tumbleweed Polar Rover”, Proc. IEEE Aerospace Conference (Big Sky, MO, March 2004), 1–8 | Zbl
[22] Bhattacharya S., Agrawal S. K., “Design, experiments and motion planning of a spherical rolling robot”, Proc. IEEE Intern. Conference on Robotics Automation (San Francisco, CA, April 2000), 1208–1212
[23] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR
[24] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR
[25] Borisov A. V., Mamaev I. S., “Rolling of a rigid body on a plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[26] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl
[27] Borisov A. V., Mamaev I. S., Kilin A. A., “Dynamics of rolling disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212 | DOI | MR | Zbl
[28] Crossley V. A., A literature review on the design of spherical rolling robots, Pittsburgh, PA, 2006, 6 pp.
[29] Duistermaat J. J., “Chaplygin's sphere”: R. Cushman, J. J. Duistermaat, J. Sniatycki, Chaplygin and the geometry of nonholonomically constrained systems, World Sci. Publ., Singapore, 2010 ; arXiv: math/0409019 | Zbl
[30] Fedorov Yu. N., Multidimensional integrable generalizations of the nonholonomic Chaplygin sphere problem, Report of Nov. 29, 2006, vol. 30, 13 pp. http://www.cirm.univ-mrs.fr/videos/2006/exposes/32/Fedorov.pdf
[31] Jovanović B., “Hamiltonization and integrability of the Chaplygin sphere in $\mathbb R^n$”, J. Nonlinear Sci., 20:5 (2010), 569–593 | DOI | MR | Zbl
[32] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl
[33] Kozlov V. V., “Symmetries and regular behavior of Hamiltonian systems”, Chaos, 6:1 (1996), 1–5 | DOI | MR | Zbl
[34] Shen J., Schneider D. A., Bloch A. M., “Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top”, Int. J. Robust Nonlinear Control, 18:9, pp (2008), 905–945 | DOI | MR