Rolling of a homogeneous ball over a dynamically asymmetric sphere
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 869-889.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a novel mechanical system consisting of two spherical bodies rolling over each other, which is a natural extension of the famous Chaplygin problem of rolling motion of a ball on a plane. In contrast to the previously explored non-holonomic systems, this one has a higher dimension and is considerably more complicated. One remarkable property of our system is the existence of “clandestine” linear in momenta first integrals. For a more trivial integrable system, their counterparts were discovered by Chaplygin. We have also found a few cases of integrability.
Keywords: nonholonomic constraint, rolling motion, Chaplygin ball, integral, invariant measure.
@article{ND_2010_6_4_a9,
     author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {Rolling of a homogeneous ball over a dynamically asymmetric sphere},
     journal = {Russian journal of nonlinear dynamics},
     pages = {869--889},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - Rolling of a homogeneous ball over a dynamically asymmetric sphere
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 869
EP  - 889
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/
LA  - ru
ID  - ND_2010_6_4_a9
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T Rolling of a homogeneous ball over a dynamically asymmetric sphere
%J Russian journal of nonlinear dynamics
%D 2010
%P 869-889
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/
%G ru
%F ND_2010_6_4_a9
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Rolling of a homogeneous ball over a dynamically asymmetric sphere. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 869-889. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 3-e izd., Nauka, M., 1989, 472 pp. | MR

[2] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Sovr. probl. matem. Fundamentalnye napravleniya, 3, VINITI, M., 1985, 304 pp. | MR | Zbl

[3] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “K modeli negolonomnogo bilyarda”, Nelineinaya dinamika, 6:2 (2010), 373–385

[5] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyutern. issled., M.–Izhevsk, 2005, 576 pp. | MR

[6] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Inst. kompyutern. issled., M.–Izhevsk, 2003, 296 pp. | MR

[7] Borisov A. V., Mamaev I. S., Marikhin V. G., “Yavnoe integrirovanie odnoi negolonomnoi zadachi”, Dokl. RAN, 422:4 (2008), 475–478 | MR | Zbl

[8] Borisov A. V., Fedorov Yu. N., “O dvukh vidoizmenennykh integriruemykh zadachakh dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1995, no. 6, 102–105 | MR | Zbl

[9] Veselov A. P., Veselova L. E., “Integriruemye negolonomnye sistemy na gruppakh Li”, Matem. zametki, 44:5 (1988), 604–619 | MR

[10] Kozlov V. V., “Integralnye invarianty posle Puankare i Kartana”: E. Kartan, Integralnye invarianty, URSS, M., 1998, 215–260

[11] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[12] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udm. un-ta, Izhevsk, 1995, 429 pp. | MR | Zbl

[13] Kozlov V. V., “Tenzornye invarianty kvaziodnorodnykh sistem differentsialnykh uravnenii i asimptoticheskii metod Kovalevskoi–Lyapunova”, Matem. zametki, 51:2 (1992), 46–52 | MR | Zbl

[14] Kozlov V. V., Ramodanov S. M., “O dvizhenii izmenyaemogo tela v idealnoi zhidkosti”, PMM, 65:4 (2001), 529–601 | MR

[15] Markeev A. P., “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, MTT, 21:1 (1986), 64–65

[16] Routh E. J., Dynamics of a system of rigid bodies, 2 vols., Dover, New York, 1905 | MR

[17] Fëdorov Yu. N., “O dvizhenii tverdogo tela v sharovom podvese”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1988, no. 5, 91–93

[18] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Sobr. soch., v. 1, GITTL, M.–L., 1948, 76–101

[19] Chaplygin S. A., “O nekotorom vozmozhnom obobschenii teoremy ploschadei s primeneniem k zadache o katanii sharov”, Sobr. soch., v. 1, GITTL, M.–L., 1948, 26–56

[20] Alves J., Dias J., “Design and control of a spherical mobile robot”, J. Systems Control Engrg, 217:6 (2003), 457–467

[21] Behar A., Matthews J., Carsey F., Jones J., “NASA/JPL Tumbleweed Polar Rover”, Proc. IEEE Aerospace Conference (Big Sky, MO, March 2004), 1–8 | Zbl

[22] Bhattacharya S., Agrawal S. K., “Design, experiments and motion planning of a spherical rolling robot”, Proc. IEEE Intern. Conference on Robotics Automation (San Francisco, CA, April 2000), 1208–1212

[23] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR

[24] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR

[25] Borisov A. V., Mamaev I. S., “Rolling of a rigid body on a plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[26] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[27] Borisov A. V., Mamaev I. S., Kilin A. A., “Dynamics of rolling disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212 | DOI | MR | Zbl

[28] Crossley V. A., A literature review on the design of spherical rolling robots, Pittsburgh, PA, 2006, 6 pp.

[29] Duistermaat J. J., “Chaplygin's sphere”: R. Cushman, J. J. Duistermaat, J. Sniatycki, Chaplygin and the geometry of nonholonomically constrained systems, World Sci. Publ., Singapore, 2010 ; arXiv: math/0409019 | Zbl

[30] Fedorov Yu. N., Multidimensional integrable generalizations of the nonholonomic Chaplygin sphere problem, Report of Nov. 29, 2006, vol. 30, 13 pp. http://www.cirm.univ-mrs.fr/videos/2006/exposes/32/Fedorov.pdf

[31] Jovanović B., “Hamiltonization and integrability of the Chaplygin sphere in $\mathbb R^n$”, J. Nonlinear Sci., 20:5 (2010), 569–593 | DOI | MR | Zbl

[32] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[33] Kozlov V. V., “Symmetries and regular behavior of Hamiltonian systems”, Chaos, 6:1 (1996), 1–5 | DOI | MR | Zbl

[34] Shen J., Schneider D. A., Bloch A. M., “Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top”, Int. J. Robust Nonlinear Control, 18:9, pp (2008), 905–945 | DOI | MR