Rolling of a homogeneous ball over a dynamically asymmetric sphere
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 869-889

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a novel mechanical system consisting of two spherical bodies rolling over each other, which is a natural extension of the famous Chaplygin problem of rolling motion of a ball on a plane. In contrast to the previously explored non-holonomic systems, this one has a higher dimension and is considerably more complicated. One remarkable property of our system is the existence of “clandestine” linear in momenta first integrals. For a more trivial integrable system, their counterparts were discovered by Chaplygin. We have also found a few cases of integrability.
Keywords: nonholonomic constraint, rolling motion, Chaplygin ball, integral, invariant measure.
@article{ND_2010_6_4_a9,
     author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {Rolling of a homogeneous ball over a dynamically asymmetric sphere},
     journal = {Russian journal of nonlinear dynamics},
     pages = {869--889},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - Rolling of a homogeneous ball over a dynamically asymmetric sphere
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 869
EP  - 889
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/
LA  - ru
ID  - ND_2010_6_4_a9
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T Rolling of a homogeneous ball over a dynamically asymmetric sphere
%J Russian journal of nonlinear dynamics
%D 2010
%P 869-889
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/
%G ru
%F ND_2010_6_4_a9
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Rolling of a homogeneous ball over a dynamically asymmetric sphere. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 869-889. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a9/