Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2010_6_4_a4, author = {M. P. Kharlamov}, title = {Topological analysis and {Boolean} functions. {I.~Methods} and application to classical systems}, journal = {Russian journal of nonlinear dynamics}, pages = {769--805}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/} }
TY - JOUR AU - M. P. Kharlamov TI - Topological analysis and Boolean functions. I.~Methods and application to classical systems JO - Russian journal of nonlinear dynamics PY - 2010 SP - 769 EP - 805 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/ LA - ru ID - ND_2010_6_4_a4 ER -
M. P. Kharlamov. Topological analysis and Boolean functions. I.~Methods and application to classical systems. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 769-805. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/
[1] Appelrot G. G., “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, AN SSSR, M.–L., 1940, 61–156
[2] Bogoyavlenskii O. I., “Dva integriruemykh sluchaya dinamiki tverdogo tela v silovom pole”, Dokl. AN SSSR, 275:6 (1984), 1359–1363 | MR | Zbl
[3] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. Matem., 48:5 (1984), 883–938 | MR
[4] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, v 2-kh tt., UdGU, Izhevsk, 1999, 892 pp.
[5] Bolsinov A. V., Rikhter P., Fomenko A. T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42
[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 384 pp.
[7] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2005, 575 pp.
[8] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2003, 296 pp.
[9] Zhukovskii N. E., “Geometricheskaya interpretatsiya rassmotrennogo S. V. Kovalevskoi sluchaya dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Izbr. soch. v 2-kh tt., v. 1, OGIZ, GITTL, M.–L., 1948, 294–339
[10] Ipatov A. F., “Dvizhenie giroskopa S. V. Kovalevskoi na granitse oblasti ultraelliptichnosti”, Uch. zap. Petrozavodsk. un-ta, 18:2 (1970), 6–93
[11] Orel O. E., “Funktsiya vrascheniya dlya integriruemykh zadach, svodyaschikhsya k uravneniyam Abelya. Traektornaya klassifikatsiya sistem Goryacheva–Chaplygina”, Matem. sb., 186:2 (1995), 105–128 | MR | Zbl
[12] Oshemkov A. A., “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vektorn. i tenzorn. analizu, 25:2 (1993), 23–109 | Zbl
[13] Pogosyan T. I., Kharlamov M. P., “Bifurkatsionnoe mnozhestvo i integralnye mnogoobraziya zadachi o dvizhenii tverdogo tela v lineinom pole sil”, Prikl. matem. i mekhan., 43:3 (1979), 419–428 | MR | Zbl
[14] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Laksovo predstavlenie so spektralnym parametrom dlya volchka Kovalevskoi i ego obobschenii”, Funkts. analiz i ego pril., 22:2 (1988), 87–88 | MR
[15] Reiman A. G., Semenov-Tyan-Shanskii M. A., Integriruemye sistemy: Teoretiko-gruppovoi podkhod, Inst. kompyutern. issled., M.–Izhevsk, 2003, 352 pp.
[16] Sretenskii L. N., “O nekotorykh sluchayakh integriruemosti uravnenii dvizheniya girostata”, Dokl. AN SSSR, 149:2 (1963), 292–294 | Zbl
[17] Kharlamov M. P., “Bifurkatsii sovmestnykh urovnei pervykh integralov v sluchae Kovalevskoi”, Prikl. matem. i mekhan., 47:6 (1983), 922–930 | MR | Zbl
[18] Kharlamov M. P., “Integralnye mnogoobraziya privedennoi sistemy v zadache o dvizhenii po inertsii tverdogo tela s nepodvizhnoi tochkoi”, MTT, 1976, no. 8, 18–23 | MR
[19] Kharlamov M. P., “K issledovaniyu oblastei vozmozhnosti dvizheniya v mekhanicheskikh sistemakh”, Dokl. AN SSSR, 267:3 (1982), 571–573 | MR | Zbl
[20] Kharlamov M. P., “O dvizhenii tverdogo tela v sluchae Goryacheva-Chaplygina”, MTT, 1984, no. 16, 3–12
[21] Kharlamov M. P., “Obobschenie 4-go klassa Appelrota: oblast suschestvovaniya dvizhenii i razdelenie peremennykh”, Nelineinaya dinamika, 2:4 (2006), 453–472 | Zbl
[22] Kharlamov M. P., “Odin klass reshenii s dvumya invariantnymi sootnosheniyami zadachi o dvizhenii volchka Kovalevskoi v dvoinom postoyannom pole”, MTT, 32 (2002), 32–38
[23] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sistem v dinamike tverdogo tela”, Dokl. AN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl
[24] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, LGU, L., 1988, 200 pp.
[25] Kharlamov M. P., “Fazovaya topologiya odnogo integriruemogo sluchaya dvizheniya tverdogo tela”, MTT, 2 (1979), 50–64
[26] Kharlamov M. P., Savushkin A. Yu., “Yavnoe integrirovanie odnoi zadachi o dvizhenii obobschennogo volchka Kovalevskoi”, Dokl. RAN, 401:3 (2005), 321–323 | MR | Zbl
[27] Tsyganov A. V., Integriruemye sistemy v metode razdeleniya peremennykh, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2005, 384 pp.
[28] Tsyganov A. V., “Razdelenie peremennykh v girostate Kovalevskoi-Goryacheva-Chaplygina”, TMF, 135:2 (2003), 240–247 | MR | Zbl
[29] Audin M., Silhol R., “Varietes abeliennes reelles et toupie de Kowalevski”, Compos. Math., 87:2 (1993), 153–229 | MR | Zbl
[30] Audin M., Spinning tops: A course on integrable systems, Cambridge Univ. Press, Cambridge, 1996, 139 pp. ; Oden M., Vraschayuschiesya volchki: Kurs integriruemykh sistem, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 1999, 216 pp. | MR | Zbl
[31] Bogoyavlensky O. I., “Euler equations on finite-dimension Lie algebras arising in physical problems”, Commun. Math. Phys., 95 (1984), 307–315 | DOI | MR
[32] Comessatti A., “Sulle varietà abeliane reale: I”, Ann. Math. Puro Appl., 1924, no. 2, 67–106; Comessatti A., “Sulle varietà abeliane reale: II”, Ann. Math. Puro Appl., 1926, no. 4, 27–71 | DOI | MR
[33] Dekkaki S., Lassas A., Ouazzani-Jamil M. et al., “Bifurcations sets of the Sretensky axial symmetric gyrostat”, Moroccan J. Condens. Matter, 5:1 (2004), 52–61
[34] Françoise J.-P., Silhol R., “Real abelian varieties and the singularities of an integrable Hamiltonian system”, Real analytic and algebraic geometry (Trento, 1988), Proc., Lecture Notes in Math., 1420, Springer, Berlin, 1990, 121–127 | MR
[35] Kharlamov M. P., “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regul. Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR | Zbl
[36] Kharlamov M. P., “Separation of variables in the generalized 4th Appelrot class: II. Real Solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634 | DOI | MR
[37] Komarov I. V., “A generalization of the Kovalevskaya top”, Phys. Lett., 123:1 (1987), 14–15 | DOI | MR
[38] Komarov I. V., Tsiganov A. V., “On integration of the Kowalewski gyrostat problem”, Regul. Chaotic Dyn., 9:2 (2004), 169–187 | DOI | MR | Zbl
[39] Komarov I. V., Tsiganov A. V., Sokolov V. V., “Poisson maps and integrable deformations of the Kowalevski top”, J. Phys. A, 36 (2003), 1–14 | DOI | MR
[40] Komarov I. V., Tsiganov A. V., “On a trajectory isomorphism of the Kowalevski gyrostat and the Clebsch problem”, J. Phys. A, 38:29 (2005), 17–27 | MR
[41] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 2 (1889), 177–232 | DOI | MR
[42] Lesfari A., “Completely integrable systems: Jacobi's heritage”, J. Geom. Phys., 31:4 (1999), 265–286 | DOI | MR | Zbl
[43] Lesfari A., “Prym varieties and applications”, J. Geom. Phys., 58:9 (2008), 1063–1079 | DOI | MR | Zbl
[44] Marikhin V. G., Sokolov V. V., “Separation of variables on a non-hyperelliptic curve”, Regul. Chaotic Dyn., 10:1 (2005), 59–70 | DOI | MR | Zbl
[45] Orel O. E., Ryabov P. E., “Topology, bifurcations and Liouville classification of Kirchhoff equations with an additional integral of fourth degree”, J. Phys. A, 34:11 (2001), 2149–2163 | DOI | MR | Zbl
[46] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Adv. Sov. Math., 6 (1991), 67–146 | MR | Zbl
[47] Randriamihamison L.-S., Topological analysis and bifurcations of invariant manifolds in the Gorjatchev–Chaplygin top, Preprint 44, Laboratoire de Topologie et Geometrie, Universite Paul Sabatier Toulouse III, 1994, 15 pp.
[48] Randriamihamison L.-S., “Topological analysis and bifurcations of invariant manifolds in the Gorjatchev–Chaplygin top”, Bull. Sci. Math., 121:8 (1997), 603–617 | MR | Zbl
[49] Reyman A. G., Semenov-Tian-Shansky M. A., “Lax representation with a spectral parameter for the Kowalewski top and its generalizations”, Lett. Math. Phys., 14:1 (1987), 55–61 | DOI | MR | Zbl
[50] Tsiganov A. V., On the generalized integrable Chaplygin system, 2010, 12 pp., arXiv: [nlin.SI] 1001.1507v1 | MR
[51] Tsiganov A. V., New variables of separation for particular case of the Kowalevski top, 2010, 12 pp., arXiv: [nlin.SI] 1001.4599v3 | MR
[52] van Moerbeke P., “The algebraic complete integrability of Hamiltonian systems”, Proc. of IUTAM-ISIMM Symp. on Modern developments in analytical mechanics (Torino, 1982), Vol. 1, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117, suppl. 1, 1983, 443–456 | MR
[53] Yehia H. M., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR | Zbl
[54] Yehia H. M., “On certain integrable motions of a rigid body acted upon by gravity and magnetic fields”, Internat. J. Non-Linear Mech., 36:7 (2001), 1173–1175 | DOI | MR | Zbl
[55] Zotev D. B., “Fomenko–Zieschang invariant in the Bogoyavlenskyi case”, Regul. Chaotic Dyn., 5:4 (2000), 437–458 | DOI | MR