Topological analysis and Boolean functions. I.~Methods and application to classical systems
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 769-805

Voir la notice de l'article provenant de la source Math-Net.Ru

We aim to completely formalize the rough topological analysis of integrable Hamiltonian systems admitting analytical solutions such that the initial phase variables along with the time derivatives of the auxiliary variables are expressed as rational functions (in fact, as polynomials) in some set of radicals depending on one variable each. We suggest a method to define the admissible regions in the integral constants space, the segments of oscillation of the separated variables and the number of connected components of integral manifolds and critical integral surfaces. This method is based on some algorithms of processing the tables of some Boolean vector-functions and of reducing the matrices of linear Boolean vector-functions to some canonical form. From this point of view we consider here the topologically richest classical problems of the rigid body dynamics. The article will be continued with the investigation of some new integrable problems.
Keywords: algebraic separation of variables, integral manifolds, Boolean functions, topological analysis, algorithms.
@article{ND_2010_6_4_a4,
     author = {M. P. Kharlamov},
     title = {Topological analysis and {Boolean} functions. {I.~Methods} and application to classical systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {769--805},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/}
}
TY  - JOUR
AU  - M. P. Kharlamov
TI  - Topological analysis and Boolean functions. I.~Methods and application to classical systems
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 769
EP  - 805
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/
LA  - ru
ID  - ND_2010_6_4_a4
ER  - 
%0 Journal Article
%A M. P. Kharlamov
%T Topological analysis and Boolean functions. I.~Methods and application to classical systems
%J Russian journal of nonlinear dynamics
%D 2010
%P 769-805
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/
%G ru
%F ND_2010_6_4_a4
M. P. Kharlamov. Topological analysis and Boolean functions. I.~Methods and application to classical systems. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 769-805. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/