Topological analysis and Boolean functions. I.~Methods and application to classical systems
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 769-805.

Voir la notice de l'article provenant de la source Math-Net.Ru

We aim to completely formalize the rough topological analysis of integrable Hamiltonian systems admitting analytical solutions such that the initial phase variables along with the time derivatives of the auxiliary variables are expressed as rational functions (in fact, as polynomials) in some set of radicals depending on one variable each. We suggest a method to define the admissible regions in the integral constants space, the segments of oscillation of the separated variables and the number of connected components of integral manifolds and critical integral surfaces. This method is based on some algorithms of processing the tables of some Boolean vector-functions and of reducing the matrices of linear Boolean vector-functions to some canonical form. From this point of view we consider here the topologically richest classical problems of the rigid body dynamics. The article will be continued with the investigation of some new integrable problems.
Keywords: algebraic separation of variables, integral manifolds, Boolean functions, topological analysis, algorithms.
@article{ND_2010_6_4_a4,
     author = {M. P. Kharlamov},
     title = {Topological analysis and {Boolean} functions. {I.~Methods} and application to classical systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {769--805},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/}
}
TY  - JOUR
AU  - M. P. Kharlamov
TI  - Topological analysis and Boolean functions. I.~Methods and application to classical systems
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 769
EP  - 805
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/
LA  - ru
ID  - ND_2010_6_4_a4
ER  - 
%0 Journal Article
%A M. P. Kharlamov
%T Topological analysis and Boolean functions. I.~Methods and application to classical systems
%J Russian journal of nonlinear dynamics
%D 2010
%P 769-805
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/
%G ru
%F ND_2010_6_4_a4
M. P. Kharlamov. Topological analysis and Boolean functions. I.~Methods and application to classical systems. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 769-805. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a4/

[1] Appelrot G. G., “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, AN SSSR, M.–L., 1940, 61–156

[2] Bogoyavlenskii O. I., “Dva integriruemykh sluchaya dinamiki tverdogo tela v silovom pole”, Dokl. AN SSSR, 275:6 (1984), 1359–1363 | MR | Zbl

[3] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. Matem., 48:5 (1984), 883–938 | MR

[4] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, v 2-kh tt., UdGU, Izhevsk, 1999, 892 pp.

[5] Bolsinov A. V., Rikhter P., Fomenko A. T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42

[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 384 pp.

[7] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2005, 575 pp.

[8] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2003, 296 pp.

[9] Zhukovskii N. E., “Geometricheskaya interpretatsiya rassmotrennogo S. V. Kovalevskoi sluchaya dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Izbr. soch. v 2-kh tt., v. 1, OGIZ, GITTL, M.–L., 1948, 294–339

[10] Ipatov A. F., “Dvizhenie giroskopa S. V. Kovalevskoi na granitse oblasti ultraelliptichnosti”, Uch. zap. Petrozavodsk. un-ta, 18:2 (1970), 6–93

[11] Orel O. E., “Funktsiya vrascheniya dlya integriruemykh zadach, svodyaschikhsya k uravneniyam Abelya. Traektornaya klassifikatsiya sistem Goryacheva–Chaplygina”, Matem. sb., 186:2 (1995), 105–128 | MR | Zbl

[12] Oshemkov A. A., “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Tr. sem. po vektorn. i tenzorn. analizu, 25:2 (1993), 23–109 | Zbl

[13] Pogosyan T. I., Kharlamov M. P., “Bifurkatsionnoe mnozhestvo i integralnye mnogoobraziya zadachi o dvizhenii tverdogo tela v lineinom pole sil”, Prikl. matem. i mekhan., 43:3 (1979), 419–428 | MR | Zbl

[14] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Laksovo predstavlenie so spektralnym parametrom dlya volchka Kovalevskoi i ego obobschenii”, Funkts. analiz i ego pril., 22:2 (1988), 87–88 | MR

[15] Reiman A. G., Semenov-Tyan-Shanskii M. A., Integriruemye sistemy: Teoretiko-gruppovoi podkhod, Inst. kompyutern. issled., M.–Izhevsk, 2003, 352 pp.

[16] Sretenskii L. N., “O nekotorykh sluchayakh integriruemosti uravnenii dvizheniya girostata”, Dokl. AN SSSR, 149:2 (1963), 292–294 | Zbl

[17] Kharlamov M. P., “Bifurkatsii sovmestnykh urovnei pervykh integralov v sluchae Kovalevskoi”, Prikl. matem. i mekhan., 47:6 (1983), 922–930 | MR | Zbl

[18] Kharlamov M. P., “Integralnye mnogoobraziya privedennoi sistemy v zadache o dvizhenii po inertsii tverdogo tela s nepodvizhnoi tochkoi”, MTT, 1976, no. 8, 18–23 | MR

[19] Kharlamov M. P., “K issledovaniyu oblastei vozmozhnosti dvizheniya v mekhanicheskikh sistemakh”, Dokl. AN SSSR, 267:3 (1982), 571–573 | MR | Zbl

[20] Kharlamov M. P., “O dvizhenii tverdogo tela v sluchae Goryacheva-Chaplygina”, MTT, 1984, no. 16, 3–12

[21] Kharlamov M. P., “Obobschenie 4-go klassa Appelrota: oblast suschestvovaniya dvizhenii i razdelenie peremennykh”, Nelineinaya dinamika, 2:4 (2006), 453–472 | Zbl

[22] Kharlamov M. P., “Odin klass reshenii s dvumya invariantnymi sootnosheniyami zadachi o dvizhenii volchka Kovalevskoi v dvoinom postoyannom pole”, MTT, 32 (2002), 32–38

[23] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sistem v dinamike tverdogo tela”, Dokl. AN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl

[24] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, LGU, L., 1988, 200 pp.

[25] Kharlamov M. P., “Fazovaya topologiya odnogo integriruemogo sluchaya dvizheniya tverdogo tela”, MTT, 2 (1979), 50–64

[26] Kharlamov M. P., Savushkin A. Yu., “Yavnoe integrirovanie odnoi zadachi o dvizhenii obobschennogo volchka Kovalevskoi”, Dokl. RAN, 401:3 (2005), 321–323 | MR | Zbl

[27] Tsyganov A. V., Integriruemye sistemy v metode razdeleniya peremennykh, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2005, 384 pp.

[28] Tsyganov A. V., “Razdelenie peremennykh v girostate Kovalevskoi-Goryacheva-Chaplygina”, TMF, 135:2 (2003), 240–247 | MR | Zbl

[29] Audin M., Silhol R., “Varietes abeliennes reelles et toupie de Kowalevski”, Compos. Math., 87:2 (1993), 153–229 | MR | Zbl

[30] Audin M., Spinning tops: A course on integrable systems, Cambridge Univ. Press, Cambridge, 1996, 139 pp. ; Oden M., Vraschayuschiesya volchki: Kurs integriruemykh sistem, «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 1999, 216 pp. | MR | Zbl

[31] Bogoyavlensky O. I., “Euler equations on finite-dimension Lie algebras arising in physical problems”, Commun. Math. Phys., 95 (1984), 307–315 | DOI | MR

[32] Comessatti A., “Sulle varietà abeliane reale: I”, Ann. Math. Puro Appl., 1924, no. 2, 67–106; Comessatti A., “Sulle varietà abeliane reale: II”, Ann. Math. Puro Appl., 1926, no. 4, 27–71 | DOI | MR

[33] Dekkaki S., Lassas A., Ouazzani-Jamil M. et al., “Bifurcations sets of the Sretensky axial symmetric gyrostat”, Moroccan J. Condens. Matter, 5:1 (2004), 52–61

[34] Françoise J.-P., Silhol R., “Real abelian varieties and the singularities of an integrable Hamiltonian system”, Real analytic and algebraic geometry (Trento, 1988), Proc., Lecture Notes in Math., 1420, Springer, Berlin, 1990, 121–127 | MR

[35] Kharlamov M. P., “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regul. Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR | Zbl

[36] Kharlamov M. P., “Separation of variables in the generalized 4th Appelrot class: II. Real Solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634 | DOI | MR

[37] Komarov I. V., “A generalization of the Kovalevskaya top”, Phys. Lett., 123:1 (1987), 14–15 | DOI | MR

[38] Komarov I. V., Tsiganov A. V., “On integration of the Kowalewski gyrostat problem”, Regul. Chaotic Dyn., 9:2 (2004), 169–187 | DOI | MR | Zbl

[39] Komarov I. V., Tsiganov A. V., Sokolov V. V., “Poisson maps and integrable deformations of the Kowalevski top”, J. Phys. A, 36 (2003), 1–14 | DOI | MR

[40] Komarov I. V., Tsiganov A. V., “On a trajectory isomorphism of the Kowalevski gyrostat and the Clebsch problem”, J. Phys. A, 38:29 (2005), 17–27 | MR

[41] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 2 (1889), 177–232 | DOI | MR

[42] Lesfari A., “Completely integrable systems: Jacobi's heritage”, J. Geom. Phys., 31:4 (1999), 265–286 | DOI | MR | Zbl

[43] Lesfari A., “Prym varieties and applications”, J. Geom. Phys., 58:9 (2008), 1063–1079 | DOI | MR | Zbl

[44] Marikhin V. G., Sokolov V. V., “Separation of variables on a non-hyperelliptic curve”, Regul. Chaotic Dyn., 10:1 (2005), 59–70 | DOI | MR | Zbl

[45] Orel O. E., Ryabov P. E., “Topology, bifurcations and Liouville classification of Kirchhoff equations with an additional integral of fourth degree”, J. Phys. A, 34:11 (2001), 2149–2163 | DOI | MR | Zbl

[46] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Adv. Sov. Math., 6 (1991), 67–146 | MR | Zbl

[47] Randriamihamison L.-S., Topological analysis and bifurcations of invariant manifolds in the Gorjatchev–Chaplygin top, Preprint 44, Laboratoire de Topologie et Geometrie, Universite Paul Sabatier Toulouse III, 1994, 15 pp.

[48] Randriamihamison L.-S., “Topological analysis and bifurcations of invariant manifolds in the Gorjatchev–Chaplygin top”, Bull. Sci. Math., 121:8 (1997), 603–617 | MR | Zbl

[49] Reyman A. G., Semenov-Tian-Shansky M. A., “Lax representation with a spectral parameter for the Kowalewski top and its generalizations”, Lett. Math. Phys., 14:1 (1987), 55–61 | DOI | MR | Zbl

[50] Tsiganov A. V., On the generalized integrable Chaplygin system, 2010, 12 pp., arXiv: [nlin.SI] 1001.1507v1 | MR

[51] Tsiganov A. V., New variables of separation for particular case of the Kowalevski top, 2010, 12 pp., arXiv: [nlin.SI] 1001.4599v3 | MR

[52] van Moerbeke P., “The algebraic complete integrability of Hamiltonian systems”, Proc. of IUTAM-ISIMM Symp. on Modern developments in analytical mechanics (Torino, 1982), Vol. 1, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117, suppl. 1, 1983, 443–456 | MR

[53] Yehia H. M., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Comm., 13:3 (1986), 169–172 | DOI | MR | Zbl

[54] Yehia H. M., “On certain integrable motions of a rigid body acted upon by gravity and magnetic fields”, Internat. J. Non-Linear Mech., 36:7 (2001), 1173–1175 | DOI | MR | Zbl

[55] Zotev D. B., “Fomenko–Zieschang invariant in the Bogoyavlenskyi case”, Regul. Chaotic Dyn., 5:4 (2000), 437–458 | DOI | MR