Multistability, period doubling and traveling waves suppression by noise excitation in a nonlinear self-oscillatory medium with periodic boundary conditions
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 755-767.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of a self-oscillatory medium whose cells represent Anishchenko–Astakhov self-sustained oscillators is studied. Under periodic boundary conditions the phenomenon of multistability is observed in the medium — the stable self-sustained oscillatory modes with different spatial structures coexist and can be realized by means of appropriately chosen initial conditions. The study of the time period doubling bifurcations is performed for different modes. It is shown that the evolution of the modes between two successive bifurcations leads to the complexification of instantaneous spatial profile and to the appearance of small-scale spatial oscillations. The distribution of the instantaneous phase shift along the medium is studied in different regimes. The influence of local noise source on the spatial structures is considered. It is demonstrated that noise can induce switchings between different regimes. The mechanism of such switchings is explored.
Keywords: self-oscillatory medium, period doubling, multistability
Mots-clés : spatial structures, noise excitation.
@article{ND_2010_6_4_a3,
     author = {A. V. Slepnev and T. E. Vadivasova and A. S. Listov},
     title = {Multistability, period doubling and traveling waves suppression by noise excitation in a nonlinear self-oscillatory medium with periodic boundary conditions},
     journal = {Russian journal of nonlinear dynamics},
     pages = {755--767},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a3/}
}
TY  - JOUR
AU  - A. V. Slepnev
AU  - T. E. Vadivasova
AU  - A. S. Listov
TI  - Multistability, period doubling and traveling waves suppression by noise excitation in a nonlinear self-oscillatory medium with periodic boundary conditions
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 755
EP  - 767
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a3/
LA  - ru
ID  - ND_2010_6_4_a3
ER  - 
%0 Journal Article
%A A. V. Slepnev
%A T. E. Vadivasova
%A A. S. Listov
%T Multistability, period doubling and traveling waves suppression by noise excitation in a nonlinear self-oscillatory medium with periodic boundary conditions
%J Russian journal of nonlinear dynamics
%D 2010
%P 755-767
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a3/
%G ru
%F ND_2010_6_4_a3
A. V. Slepnev; T. E. Vadivasova; A. S. Listov. Multistability, period doubling and traveling waves suppression by noise excitation in a nonlinear self-oscillatory medium with periodic boundary conditions. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 755-767. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a3/

[1] Polak L. S., Mikhailov A. S., Samoorganizatsiya v neravnovesnykh fiziko-khimicheskikh sistemakh, Nauka, M., 1983, 283 pp.

[2] Gollub J. P., Benson S. V., “Many routes to turbulent convection”, J. Fluid Mech., 100:3 (1980), 449–470 | DOI | MR

[3] Brandstater A., Swift J., Swinny H. L., Wolf A., “Low-dimensional chaos in a hidrodinamic systems”, Phys. Rev. Lett., 51:6 (1983), 1442–1445 | DOI | MR

[4] Loarte A., Monk R. D., Kukushkin A. S., Right E., Campbell D. J., Conway C. D., Maggi C. F., “Self-sustained divertor plasma oscillations in the JET Takomak”, Phys. Rev. Lett., 83:18 (1999), 3657–3660 | DOI

[5] Schwabe M., Rubin-Zuzic S., Thomas H. M., Morfill G. E., “Higly resolved self-excited density waves in a complex plasma”, Phys. Rev. Lett., 99 (2007), 095002, 4 pp. | DOI

[6] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer Ser. Synergetics, 19, Springer, Berlin, 1984, 156 pp. | MR | Zbl

[7] Epstein I. R., Pojman J. A., An introduction to nonlinear chemical dynamics: Oscillations, waves, patterns, and chaos, Oxford Univ. Press, New York, 1998, 480 pp.

[8] Yashin V. V., Balazs A. C., “Pattern formation and shape changes in self-oscillating polimer gels”, Science, 314 (2006), 798–801 | DOI | MR

[9] Jumoto J., Otsuka K., “Frustrated optical instability: self-induced periodic and chaotic spatial distribution of polarization in nonlinear optical media”, Phys. Rev. Lett., 54:16 (1985), 1806–1809 | DOI

[10] Law C. T., Kaplan A. E., “Dispersion-related multimode instabilities and self-sustained oscillations in nonlinear counterpropagating waves”, Opt. Lett., 14:1 (1989), 734–739 | DOI

[11] Plyusnina T. Yu., Lavrova A. I., Riznichenko G. Yu., Rubin A. B., “Modelirovanie neodnorodnogo raspredeleniya i kolebanii transmembrannogo potentsiala i pH vblizi vneshnei storony membrany kletki vodoroslei Chara corallina”, Biofizika, 50:3 (2005), 492–499

[12] Zuckermann M., “Self-sustained potential oscillations and the main phase transition of lipid bilayers”, Biophis. J., 64:5 (2009), 1369–1370 | DOI

[13] Ryskin N. M., Trubetskov D. I., Nelineinye volny, Nauka, M., 2000, 272 pp.

[14] Chate H., Manneville P., “Phase diagram of two-dimensional complex Ginzburg–Landau equation”, Phys. A, 224 (1996), 348–368 | DOI | MR

[15] Shraiman B. I., Pumir A., van Saarlos W., Hohenberg P. C., Chate H., Holen M., “Spatiotemporal chaos in the one-dimensional complex Ginzburg–Landau equation”, Phys. D, 57 (1992), 241–248 | DOI | MR | Zbl

[16] Kaneko K., “Spatiotemporal chaos in one- and two-dimensional map lattices”, Phys. D, 32 (1989), 60–82 | DOI | MR

[17] Kuznetsov A. P., Kuznetsov S. P., “Kriticheskaya dinamika reshetok svyazannykh otobrazhenii u poroga khaosa”, Izv. vuzov. Ser. Radiofizika, 34:10–12 (1991), 1079–1115 | MR

[18] Astakhov V. V., Bezruchko B. P., Ponomarenko V. I., “Formirovanie multistabilnosti, klassifikatsiya izomerov i ikh evolyutsiya v svyazannykh feigenbaumovskikh sistemakh”, Izv. vuzov. Ser. Radiofizika, 34:1 (1991), 35–39

[19] Anischenko V. S., Aranson I. S., Postnov D. E., Rabinovich M. I., “Prostranstvennaya sinkhronizatsiya i bifurkatsii razvitiya khaosa v tsepochke svyazannykh generatorov”, Dokl. AN SSSR, 286:5 (1986), 1120–1124

[20] Osipov G. V., Pikovsky A. S., Rosenblum M. G., Kurths J., “Phase synchronization effects in a lattice of nonidentical Rossler oscillators”, Phys. Rev. E, 55 (1997), 2353–2361 | DOI | MR

[21] Shabunin A. V., Astakhov V. V., Anishchenko V. S., “Developing chaos on base of traveling waves in a chain of coupled oscillators with period-doubling: Synchronization and hierarchy of multistability formation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12:8 (2002), 1895–1908 | DOI | MR

[22] Anischenko V. S., Astakhov V. V., “Eksperimentalnoe issledovanie mekhanizma vozniknoveniya i struktury strannogo attraktora v generatore s inertsionnoi nelineinostyu”, Radiotekhnika i elektronika, 28:6 (1983), 1109–1115 | Zbl

[23] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, Nauka, M., 1990, 312 pp.

[24] Marpl-ml. S. L., Tsifrovoi spektralnyi analiz i ego prilozheniya, Mir, M., 1990, 584 pp.

[25] Astakhov V. V., Bezruchko B. P., Gulyaev Yu. V., Seleznev E. P., “Multistabilnye sostoyaniya dissipativno-svyazannykh feigenbaumovskikh sistem”, Pisma v ZhTF, 15:3 (1988), 60–64

[26] Shabunin A. V., Akopov A. A., Astakhov V. V., Vadivasova T. E., “Beguschie volny v diskretnoi angarmonicheskoi avtokolebatelnoi srede //”, Izv. vuzov. PND, 13:4 (2005), 57–55

[27] Shabunin A., Feudel U. and Astakhov V., “Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators”, Phys. Rev. E, 80 (2009), 026211 | DOI