Backward stochastic bifurcations of the discrete system cycles
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 737-753.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study stochastically forced limit cycles of discrete dynamical systems in a period-doubling bifurcation zone. A phenomenon of a decreasing of the stochastic cycle multiplicity with a noise intensity growth is investigated. We call it by a backward stochastic bifurcation (BSB). In this paper, for the BSB analysis we suggest a stochastic sensitivity function technique. As a result, a method for the estimation of critical values of noise intensity corresponding to BSB is proposed. The constructive possibilities of this general method for the detailed BSB analysis of the multiple stochastic cycles of the forced Verhulst and Ricker systems are demonstrated.
Keywords: stochastic discrete systems, Verhulst system, Ricker system.
Mots-clés : bifurcations
@article{ND_2010_6_4_a2,
     author = {I. A. Bashkirtseva and L. B. Ryashko and S. P. Fedotov and I. N. Tsvetkov},
     title = {Backward stochastic bifurcations of the discrete system cycles},
     journal = {Russian journal of nonlinear dynamics},
     pages = {737--753},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a2/}
}
TY  - JOUR
AU  - I. A. Bashkirtseva
AU  - L. B. Ryashko
AU  - S. P. Fedotov
AU  - I. N. Tsvetkov
TI  - Backward stochastic bifurcations of the discrete system cycles
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 737
EP  - 753
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a2/
LA  - ru
ID  - ND_2010_6_4_a2
ER  - 
%0 Journal Article
%A I. A. Bashkirtseva
%A L. B. Ryashko
%A S. P. Fedotov
%A I. N. Tsvetkov
%T Backward stochastic bifurcations of the discrete system cycles
%J Russian journal of nonlinear dynamics
%D 2010
%P 737-753
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a2/
%G ru
%F ND_2010_6_4_a2
I. A. Bashkirtseva; L. B. Ryashko; S. P. Fedotov; I. N. Tsvetkov. Backward stochastic bifurcations of the discrete system cycles. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 737-753. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a2/

[1] Stratonovich R. L., Topics in the theory of random noise, v. 1, Gordon and Breach, New York–London, 1963, 292 pp. | MR

[2] Horsthemke W., Lefever R., Noise-induced transitions, Springer, Berlin, 1984, 318 pp. | MR

[3] Landa P. S., McClintock P. V. E., “Changes in the dynamical behavior of nonlinear systems induced by noise”, Phys. Rep., 323:1 (2000), 1–80 | DOI | MR

[4] Lindner B., García-Ojalvo J., Neiman A., Schimansky-Geier L., “Effects of noise in excitable systems”, Phys. Rep., 392 (2004), 321–424 | DOI

[5] Gammaitoni L., Hänggi P., Jung P., Marchesoni F., “Stochastic resonance”, Rev. Mod. Phys., 70 (1998), 223–287 | DOI

[6] McDonnell M. D., Stocks N. G., Pearce C. E. M., Abbott D., Stochastic resonance: From suprathreshold stochastic resonance to stochastic signal quantization, Cambridge Univ. Press, Cambridge, 2008, 448 pp.

[7] Matsumoto K., Tsuda I., “Noise-induced order”, J. Stat. Phys., 33 (1983), 757 | DOI | MR

[8] Gassmann F., “Noise-induced chaos-order transitions”, Phys. Rev. E, 55 (1997), 2215–2221 | DOI

[9] Gao J. B., Hwang S. K., Liu J. M., “When can noise induce chaos?”, Phys. Rev. Lett., 82 (1999), 1132–1136 | DOI

[10] Mayer-Kress G., Haken H., “The influence of noise on the logistic model”, J. Stat. Phys., 29 (1981), 149–171 | DOI | MR

[11] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, Nauka, M., 1990, 312 pp.

[12] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Neiman A. B., Strelkova G. I., Shimanskii-Gaier L., Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh, Inst. kompyutern. issled., M.–Izhevsk, 2003, 544 pp.

[13] Bashkirtseva I. A., Ryashko L. B., “Sensitivity analysis of the stochastically and periodically forced Brusselator”, Phys. A, 278 (2000), 126–139 | DOI

[14] Fedotov S., Bashkirtseva I., Ryashko L., “Stochastic dynamo model for subcritical transition”, Phys. Rev. E, 73 (2006), 066307, 5 pp. | DOI | MR

[15] Arnold L., Random dynamical systems, Springer, Berlin, 1998, 586 pp. | MR

[16] Lefever R., Turner J., “Sensitivity of a Hopf bifurcation to external multiplicative noise”, Fluctuations and sensitivity in nonequilibrium systems (Austin, Tex., 1984), Springer Proc. Phys., 1, eds. W. Horsthemke and D. K. Kondepudi, Springer, Berlin, 1984, 143–149 | MR

[17] Lefever R., Turner J., “Sensitivity of a Hopf bifurcation to multiplicative colored noise”, Phys. Rev. Lett., 56 (1986), 1631–1634 | DOI | MR

[18] Franzoni L., Mannella R., McClintock P., Moss F., “Postponement of Hopf bifurcations by multiplicative colored noise”, Phys. Rev. A., 36 (1987), 834–841 | DOI

[19] Arnold L., Bleckert G., Schenk-Hoppe K., “The stochastic Brusselator: Parametric noise destroys Hopf bifurcation”, Stochastic Dynamics (Bremen, 1997), eds. H. Crauel and M. Gundlach, Springer, New York, 1999, 71–92 | MR | Zbl

[20] Namachchivaya N. Sri., “Hopf bifurcation in the presence of both parametric and external stochastic excitations”, J. Appl. Mech., 110 (1988), 923–930 | DOI | MR

[21] Schenk-Hoppe K. R., “Bifurcation scenarios of the noisy Duffing–van der Pol oscillator”, Nonlinear Dynam., 11:3 (1996), 255–274 | DOI | MR

[22] Leung H. K., “Stochastic Hopf bifurcation in a biased van der Pol model”, Phys. A, 254 (1998), 146–155 | DOI | MR

[23] Bashkirtseva I., Ryashko L., Schurz H., “Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances”, Chaos Solitons Fractals, 39 (2009), 72–82 | DOI | MR | Zbl

[24] Crutchfield J. P., Nauenberg M., Rudnick J., “Scaling for external noise at the onset of chaos”, Phys. Rev. Lett., 46 (1981), 933–935 | DOI | MR

[25] Crutchfield J. P., Farmer J., Huberman B. A., “Fluctation and simple chaotic dynamics”, Phys. Rep., 92 (1982), 45–82 | DOI | MR

[26] Kuznetsov A. P., Kapustina Yu. V., “Svoistvo skeilinga pri perekhode k khaosu v modelnykh otobrazheniyakh s shumom”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 8:6 (2000), 78–87 | Zbl

[27] Kuznetsov A. P., Kuznetsov S. P., Sedova Yu. V., “O svoistvakh skeilinga pri vozdeistvii shuma v otobrazhenii okruzhnosti s chislom vrascheniya, zadannym zolotym srednim”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 13:5 (2005), 56–76 | Zbl

[28] Ryashko L. B., Stikhin P. V., “Obratnye bifurkatsii v stokhasticheskoi sisteme Resslera”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 13:4 (2005), 20–36

[29] Bashkitseva I. A., Ryashko L. B., “Sensitivity analysis of stochastically forced Lorenz model cycles under period-doubling bifurcations”, Dynam. Systems Appl., 11 (2002), 293–310 | MR

[30] Ryagin M., Ryashko L., “The analysis of the stochastically forced periodic attractors for Chua's circuit”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 3981–3987 | DOI

[31] Bashkirtseva I. A., Ryashko L. B., “Sensitivity and chaos control for the forced nonlinear oscillations”, Chaos Solitons Fractals, 26 (2005), 1437–1451 | DOI | MR | Zbl

[32] Bashkirtseva I., Ryashko L., “Constructive analysis of noise-induced transitions for coexisting periodic attractors of Lorenz model”, Phys. Rev. E, 79 (2009), 041106, 9 pp. | DOI | MR

[33] Elaydi S. N., An introduction to difference equations, 2nd ed., Springer, Berlin, 1999, 427 pp. | MR | Zbl

[34] Bashkirtseva I. A., Ryashko L. B., Tsvetkov I. N., “Stokhasticheskaya chuvstvitelnost ravnovesii i tsiklov odnomernykh diskretnykh otobrazhenii”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 17:6 (2009), 74–85