Targeting with external noise
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 719-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

An influence of a low noise on the properties of the Hénon map chaotic modes is studied. The strong chaos and the intermittency mode are considered. We find the mechanisms of a significant influence of the low noise on the chaotic mode properties. The conditions which have impact on the Poincaré recurrences time are defined. We suggest the targeting stochastic scenario for taking the Hénon map under control. The physics and the efficiency of the proposed targeting method are considered.
Keywords: dissipative dynamical systems, Hénon map, targeting, Poincaré recurrences
Mots-clés : external noise.
@article{ND_2010_6_4_a1,
     author = {Yu. L. Bolotin and S. V. Slipushenko and A. V. Tur and V. V. Yanovsky},
     title = {Targeting with external noise},
     journal = {Russian journal of nonlinear dynamics},
     pages = {719--736},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a1/}
}
TY  - JOUR
AU  - Yu. L. Bolotin
AU  - S. V. Slipushenko
AU  - A. V. Tur
AU  - V. V. Yanovsky
TI  - Targeting with external noise
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 719
EP  - 736
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a1/
LA  - ru
ID  - ND_2010_6_4_a1
ER  - 
%0 Journal Article
%A Yu. L. Bolotin
%A S. V. Slipushenko
%A A. V. Tur
%A V. V. Yanovsky
%T Targeting with external noise
%J Russian journal of nonlinear dynamics
%D 2010
%P 719-736
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a1/
%G ru
%F ND_2010_6_4_a1
Yu. L. Bolotin; S. V. Slipushenko; A. V. Tur; V. V. Yanovsky. Targeting with external noise. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 719-736. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a1/

[1] Bolotin Yu. L., Tur A. V., Yanovsky V. V., Chaos: Concepts, control and constructive use, Springer, Berlin, 2009, 198 pp. | MR | Zbl

[2] Aubry S., “The new concept of transitions by breaking of analyticity in a crystallographic model”, Solitons and condensed matter physics, Proc. Sympos. Nonlinear (Soliton) Structure and Dynamics in Condensed Matter (Oxford, 1978), Springer Ser. Solid-State Sci., 8, eds. A. R. Bishop and T. Schneider, Springer, Berlin–New York, 1978, 264–277 | MR

[3] Mather J. N., “Existence of quasi-periodic orbits for twist homeomorphisms of the annulus”, Topology, 21 (1982), 457–467 | DOI | MR | Zbl

[4] Kandrup H. E., “Phase space transport in noisy Hamiltonian systems”, Ann. New York Acad. Sci., 867 (1998), 320–333

[5] Ott E., Grebogi C., Yorke J., “Controlling chaos”, Phys. Rev. Lett., 64 (1990), 1196–1199 | DOI | MR | Zbl

[6] Shinbrot T., Grebogi C., Yorke J., “Using chaos to direct trajectories to targets”, Phys. Rev. Lett., 65 (1990), 3215–3218 | DOI

[7] Grebogi C., Ott E., Yorke J., “Critical exponent of chaotic transients in nonlinear dynamical systems”, Phys. Rev. Lett., 57 (1986), 1284–1287 | DOI | MR

[8] Karney C., “Long-time correlations in the stochastic regimes”, Phys. D, 8 (1983), 360–380 | DOI | MR

[9] Schroer C., Ott E., “Targeting in Hamiltonian systems that have mixed regular/chaotic phase spase”, Chaos, 7:4 (1997), 512–519 | DOI | MR | Zbl

[10] Poincaré H., “Sur le probléme des trois corps et les équations de la dynamique”, Acta Math., 13 (1890), 1–270

[11] Feder E., Fraktaly, Mir, M., 1991, 254 pp.

[12] Anischenko V. S., Neiman A. B., “Period vozvrata Puankare v rezhime dinamicheskogo khaosa”, ZhTF, 59:8 (1989), 117–118

[13] Boshernitzan M., “Quantitative recurrence results”, Invent. Math., 113:3 (1993), 617–631 | DOI | MR | Zbl

[14] Saussol B., Troubetzkoy S., Vaienti S., “Recurrence, dimensions and Lyapunov exponents”, J. Stat. Phys., 106 (2002), 623–634 | DOI | MR | Zbl

[15] Kim C., Kim D. H., “On the law of logarithm of the recurrence time”, Discrete Contin. Dyn. Sys., 10:3 (2004), 581–587 | DOI | MR | Zbl

[16] Haydn N., Luevano J., Mantica G., Vaienti S., “Multifractal properties of return time statistics”, Phys. Rev. Lett., 88 (2002), 224502, 4 pp. | DOI

[17] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984, 511 pp.

[18] Zaslavsky G. M., Edelman M., Niyazov B. A., “Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics”, Chaos, 7:1 (1997), 159–181 | DOI | MR | Zbl

[19] Kac M., Probability and related topics in physical sciences, Interscience, New York, 1959, 266 pp. | MR | Zbl

[20] Hénon M., “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50:1 (1976), 69–77 | DOI | MR

[21] Kaplan H., “Return to type-I intermittency”, Phys. Rev. Lett., 68 (1992), 553–556 | DOI | MR | Zbl

[22] Kaplan H., “Type-I intermittency for the Hénon-map family”, Phys. Rev. E, 48 (1993), 1655–1669 | DOI | MR

[23] Rodrigues Ch. S., Grebogi C., de Moura A. P. S., Escape from attracting sets in randomly perturbed systems, April 2010, arXiv: 1004.3125

[24] Anischenko V. S., Znakomstvo s nelineinoi dinamikoi, URSS, M., 2007, 143 pp.

[25] Klyatskin V. I., Stokhasticheskie uravneniya i volny v sluchaino-neodnorodnykh sredakh, Nauka, M., 1980, 336 pp.

[26] Smale S., “Diffeomorphisms with many periodic points”, Differential and combinatorial topology, ed. S. S. Cairns, Princeton Univ. Press, Princeton, 1965, 63–80 | MR | Zbl

[27] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2001, 294 pp.

[28] Shuster G., Determinirovannyi khaos, Mir, M., 1988, 240 pp.

[29] Hirsch H., Huberman B. A., Scalapino D. J., “Theory of intermittency”, Phys. Rev. A, 25 (1982), 519–532 | DOI