Nonlinear oscillations of sympathetic pendulums
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 605-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear problem of motion of two identical pendulums connected by an elastic spring in the neighborhood of their stable vertical equilibrium is investigated. Stiffness of the spring is supposed small, i.e. the case close to resonance $1:1$ is considered. The problem of existence and orbital stability of periodical motions of the pendulums arising from the equilibrium is solved. It is indicated existence of motions asymptotic to one of the periodical motions. An analysis of quasi-periodical motions of an approximate system is given in which members up to the forth order inclusively in the normalizing Hamiltonian of the problem are taken into account. Using KAM-theory the question is considered of preservation of these motions in the complete nonlinear system in which members of all orders in the series expansion of Hamiltonian in the sufficiently small neighborhood of the equilibrium are taken account.
Keywords: pendulum; nonlinear oscillation; resonance; stability.
@article{ND_2010_6_3_a8,
     author = {A. P. Markeev},
     title = {Nonlinear oscillations of sympathetic pendulums},
     journal = {Russian journal of nonlinear dynamics},
     pages = {605--622},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a8/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - Nonlinear oscillations of sympathetic pendulums
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 605
EP  - 622
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a8/
LA  - ru
ID  - ND_2010_6_3_a8
ER  - 
%0 Journal Article
%A A. P. Markeev
%T Nonlinear oscillations of sympathetic pendulums
%J Russian journal of nonlinear dynamics
%D 2010
%P 605-622
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a8/
%G ru
%F ND_2010_6_3_a8
A. P. Markeev. Nonlinear oscillations of sympathetic pendulums. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 605-622. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a8/

[1] Zommerfeld A., Mekhanika, Inostr. lit-ra, M., 1947, 392 pp.

[2] Gantmakher F. R., Lektsii po analiticheskoi mekhanike, Fizmatgiz, M., 1960, 296 pp.

[3] Markeev A. P., Teoreticheskaya mekhanika, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2007, 592 pp.

[4] Dzhakalya G. E. O., Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979, 319 pp.

[5] Zhuravskii A. M., Spravochnik po ellipticheskim funktsiyam, AN SSSR, M.–L., 1941, 235 pp.

[6] Byrd P. F., Friedman M. D., Handbook of elliptic integral for engineers and physicists, Springer, Berlin; Göttingen; Heidelberg, 1954, 355 pp. | MR | Zbl

[7] Markeev A. P., “O kriticheskom sluchae pary nulevykh kornei v gamiltonovoi sisteme s dvumya stepenyami svobody”, PMM, 62:3 (1998), 372–382 | MR

[8] Markeev A. P., “Ob ustoichivosti i nelineinykh kolebaniyakh gamiltonovoi sistemy v odnom rezonansnom sluchae”, Izv. RAN. MTT, 1998, no. 4, 38–49

[9] Lyapunov A. M., “Obschaya zadacha ob ustoichivosti dvizheniya”, Sobr. soch., v 5 tt., v. 2, AN SSSR, M.–L., 1956, 7–263

[10] Malkin I. G., Teoriya ustoichivosti gamiltonovykh sistem, Nauka, M., 1966, 530 pp.

[11] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR | Zbl

[12] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973, 168 pp.

[13] Markeev A. P., “Algoritm normalizatsii gamiltonovoi sistemy v zadache ob orbitalnoi ustoichivosti periodicheskikh dvizhenii”, PMM, 66:6 (2002), 929–938 | MR | Zbl

[14] Neishtadt A. I., “Otsenki v teoreme Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii”, PMM, 45:6 (1981), 1016–1025 | MR | Zbl