On the dynamics of two point vortices in an annular region
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 531-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the system of two vortices in an annular region is shown to be integrable in the sense of Liouville. A few methods for analysis of the dynamics of integrable systems are discussed and these methods are then applied to the study of possible motions of two vortices of equal in magnitude intensities. Using the previously established fact of the existence of relative choreographies, the absolute motions of the vortices are classified in respect to the corresponding regions in the phase portrait of the reduced system.
Mots-clés : point vortex, equations of motion, vortex pair.
Keywords: reduction, bifurcational diagram, relative choreographies
@article{ND_2010_6_3_a4,
     author = {V. V. Vaskin and N. N. Erdakova},
     title = {On the dynamics of two point vortices in an annular region},
     journal = {Russian journal of nonlinear dynamics},
     pages = {531--548},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a4/}
}
TY  - JOUR
AU  - V. V. Vaskin
AU  - N. N. Erdakova
TI  - On the dynamics of two point vortices in an annular region
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 531
EP  - 548
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a4/
LA  - ru
ID  - ND_2010_6_3_a4
ER  - 
%0 Journal Article
%A V. V. Vaskin
%A N. N. Erdakova
%T On the dynamics of two point vortices in an annular region
%J Russian journal of nonlinear dynamics
%D 2010
%P 531-548
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a4/
%G ru
%F ND_2010_6_3_a4
V. V. Vaskin; N. N. Erdakova. On the dynamics of two point vortices in an annular region. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 531-548. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a4/

[1] Agostinelli S., “Applicazione del metido delle immagini alla determinazione del moto liquido piano in una corona circolare in cui si formino dei vortici puntiformi. Problemi elettrostatici correspondenti”, Rend. Ist. Lomb. Sci. Lett. (ser. 3), 6 (1942), 669–689 | MR | Zbl

[2] Borisov A. V., Mamaev I. S., Kilin A. A., “Absolute and relative choreographies in the problem of point vortices moving on a plane”, Regul. Chaotic Dyn., 9:2 (2004), 101–112 | DOI | MR

[3] Fetter A., “Low-lying superfluid states in a rotating annulus”, Phys. Rev., 153:1 (1967), 285–296 | DOI | Zbl

[4] Helmholtz H., “Über Intagrale hydrodynamischen Gleichungen, weiche den Wirbelbewegungen entsprechen”, J. Rein. Angew. Math., 55 (1858), 22–55; Gelmgolts G., Osnovy vikhrevoi teorii, Inst. kompyutern. issl., M.–Izhevsk, 2002, 82 pp.

[5] Lakaniemi M., On the dynamics of point vortices in a quantum gas confined in an annular region, arXiv: 0708.1898v3 | Zbl

[6] Borisov A. V., Bolsinov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | MR | Zbl

[7] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Inst. kompyutern. issl., M.–Izhevsk, 2005, 368 pp.

[8] Geshev P. I., Ezdin B. S., “Dvizhenie vikhrevoi pary mezhdu parallelnymi stenkami”, PMTF, 1983, no. 5, 62–67

[9] Zueva T. I., “Gelii vo vraschayuschikhsya koltsakh: ravnovesnoe raspredelenie bolshogo chisla vikhrei”, Fizika nizkikh temperatur, 22:9 (1996), 1100–1102

[10] Zueva T. I., “Dvizhenie vikhrei v koltsevoi oblasti”, Fizika nizkikh temperatur, 26:2 (2000), 119–127

[11] Kirchhoff G., Vorlesungen über mathematische Physik, v. 1, Mechanik, Teubner, Leipzig, 1876, 466 pp.