Dynamic advection
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 521-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new concept of dynamic advection is introduced. The model of dynamic advection deals with the motion of massive particles in a 2D flow of an ideal incompressible liquid. Unlike the standard advection problem, which is widely treated in the modern literature, our equations of motion account not only for particles' kinematics, governed by the Euler equations, but also for their dynamics (which is obviously neglected if the mass of particles is taken to be zero). A few simple model problems are considered.
Mots-clés : advection, point vortex, bifurcation complex.
Keywords: mixing, coarse-grained impurities
@article{ND_2010_6_3_a3,
     author = {A. V. Borisov and I. S. Mamaev and S. M. Ramodanov},
     title = {Dynamic advection},
     journal = {Russian journal of nonlinear dynamics},
     pages = {521--530},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a3/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
AU  - S. M. Ramodanov
TI  - Dynamic advection
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 521
EP  - 530
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a3/
LA  - ru
ID  - ND_2010_6_3_a3
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%A S. M. Ramodanov
%T Dynamic advection
%J Russian journal of nonlinear dynamics
%D 2010
%P 521-530
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a3/
%G ru
%F ND_2010_6_3_a3
A. V. Borisov; I. S. Mamaev; S. M. Ramodanov. Dynamic advection. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 521-530. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a3/

[1] Ganiev R. F., Reviznikov D. L., Ukrainskii L. E., “Volnovoe peremeshivanie”, Nelineinaya dinamika, 4:2 (2008), 113–132 | MR | Zbl

[2] Ramodanov S. M., “K zadache o dvizhenii dvukh massovykh vikhrei v idealnoi zhidkosti”, Nelineinaya Dinamika, 2:4 (2006), 435–443

[3] Aref H., “The development of chaotic advection”, Phys. Fluids, 14 (2002), 1315–1325 ; Aref Kh., “Razvitie khaoticheskoi advektsii”, Nelineinaya dinamika, 2:1 (2006), 111–133 | DOI | MR | MR

[4] Aref H., “Stirring by chaotic advection”, J. Fluid Mech., 143 (1984), 1–21 | DOI | MR | Zbl

[5] Aref H., Pomphrey N., “Integrable and chaotic motions of four vortices”, Phys. Lett. A, 78 (1980), 297–300 | DOI | MR

[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Multiparticle systems: The algebra of integrals and integrable cases”, Regul. Chaotic Dyn., 14:1 (2009), 18–41 | DOI | MR

[7] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Motion of circular cylinder and $n$ point vortices in a perfect fluid”, Regul. Chaotic Dyn., 8:4 (2003), 449–462 | DOI | MR | Zbl

[8] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamics of two interacting circular cylinders in perfect fluid”, Discrete Contin. Dyn. Syst., 19:2 (2007), 235–253 | DOI | MR | Zbl

[9] Lamb H., Hydrodynamics, 6th ed., Dover, New York, 1945, 738 pp. ; Lamb G., Gidrodinamika, OGIZ, Gostekhizdat, M.–L., 1947, 928 pp.

[10] Ramodanov S. M., “Motion of a circular cylinder and $N$ point vortices in a perfect fluid”, Regul. Chaotic Dyn., 7:3 (2002), 291–298 | DOI | MR | Zbl

[11] Aref H., Roenby J., Stremler M. A., Tophøj L., “Nonlinear excursions of particles in ideal 2D flows”, Phys. D, 240:2 (2011), 199–207 | DOI | MR | Zbl

[12] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (2010), 71–132 | MR | Zbl