New variables of separation for particular case of the Kowalewski top
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 639-652.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the polynomial bi-Hamiltonian structures for the Kowalewski top in special case of zero square integral. An explicit procedure to find variables of separation and separation relations is considered in detail.
Keywords: Kowalewski top, separation of variables, bi-Hamiltonian geometry, differential geometry, algebraic curves.
@article{ND_2010_6_3_a10,
     author = {A. V. Tsiganov},
     title = {New variables of separation for particular case of the {Kowalewski} top},
     journal = {Russian journal of nonlinear dynamics},
     pages = {639--652},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a10/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - New variables of separation for particular case of the Kowalewski top
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 639
EP  - 652
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a10/
LA  - ru
ID  - ND_2010_6_3_a10
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T New variables of separation for particular case of the Kowalewski top
%J Russian journal of nonlinear dynamics
%D 2010
%P 639-652
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a10/
%G ru
%F ND_2010_6_3_a10
A. V. Tsiganov. New variables of separation for particular case of the Kowalewski top. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 639-652. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a10/

[1] Audin M., Spinning tops: A course on integrable systems, Cambridge Stud. Adv. Math., 51, Cambridge Univ. Press, Cambridge, 1999, 150 pp. | MR | Zbl

[2] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2005, 608 pp.

[3] Computational aspects of algebraic curves, Lecture Notes Series on Computing, 13, ed. T. Shaska, World Sci. Publ., Hackensack, NJ, 2005, 350 pp. | MR

[4] Dubrovin B. A., Rimanovy poverkhnosti i nelineinye uravneniya, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 80 pp.

[5] Falqui G., Pedroni M., “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 | DOI | MR | Zbl

[6] Jacobi C. G. J., Vorlesungen über Dynamik, Reimer, Berlin, 1866, 290 pp. | Zbl

[7] Kuznetsov V. B., Tsiganov A. V., “A special case of Neumann's system and the Kowalewski-Chaplygin-Goryachev top”, J. Phys. A, 22 (1989), L73–L79 | DOI | MR | Zbl

[8] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, MGU, M., 1980, 231 pp.; НИЦ «Регулярная и хаотическая динамика», М.–Ижевск, 2000, 248 с.

[9] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 429 pp.

[10] Kowalevski S., “Sur le probléme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | DOI | MR

[11] Magri F., “Eight lectures on integrable systems”, Integrability of nonlinear systems, Lecture Notes in Phys., 495, eds. Y. Kosmann-Schwarzbach et al., Springer, Berlin, 1997, 256–296 | MR | Zbl

[12] Markushevich D., “Kowalevski top and genus-2 curves”, J. Phys. A, 34:11 (2001), 2125–2135 | DOI | MR | Zbl

[13] Matsutani S., Previato E., “Jacobi inversion on strata of the Jacobian of the $C^{rs}$ curve $y^r=f(x)$”, J. Math. Soc. Japan, 60:4 (2008), 1009–1044 | DOI | MR | Zbl

[14] Nakayashiki A., On hyperelliptic abelian functions of genus 3, 2008, arXiv: 0809.3303v1 | MR

[15] Rauch-Wojciechowski S., Tsiganov A. V., “Quasi-point separation of variables for Hénon–Heiles system and system with quartic potential”, J. Phys. A, 29:23 (1996), 7769–7778 | DOI | MR | Zbl

[16] Richelot F., “Essai sur uneméthode générale pour déterminer la valeur des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes”, C. R. Acad. Sci., Paris, 2 (1836), 622–627

[17] Sklyanin E. K., “Separation of variables — new trends”, Progr. Theoret. Phys. Suppl., 118 (1995), 35–60 | DOI | MR | Zbl

[18] Smirnov F. A., “Dual Baxter equations and quantization of the affine Jacobian”, J. Phys. A, 33 (2000), 3385–3405 | DOI | MR | Zbl

[19] Tsiganov A. V., “On the Kowalevski-Goryachev-Chaplygin gyrostat”, J. Phys. A, 35:26 (2002), L309–L318 | DOI | MR | Zbl

[20] Tsiganov A. V., “Compatible Lie\f Poisson brackets on Lie algebras $e(3)$ and $so(4)$”, Theoret. and Math. Phys., 151:1 (2007), 459-–473 | DOI | MR | Zbl

[21] Tsiganov A. V., “On the two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A, 40 (2007), 6395–6406 | DOI | MR | Zbl

[22] Tsiganov A. V., “Separation of variables for a pair of integrable systems on $so^*(4)$”, Dokl. Math., 76:3 (2007), 839–842 | DOI | MR | Zbl

[23] Tsiganov A. V., “On bi-Hamiltonian structure of some integrable systems on $so^*(4)$”, J. Nonlinear Math. Phys., 15:2 (2008), 171–185 | DOI | MR | Zbl

[24] Tsiganov A. V., “On bi-Hamiltonian geometry of the Lagrange top”, J. Phys. A, 41 (2008), 315212, 12 pp. | DOI | MR | Zbl

[25] Tsiganov A. V., “The Poisson bracket compatible with the classical reflection equation algebra”, Regul. Chaotic Dyn., 13:3 (2008), 191–203 | DOI | MR

[26] Tsiganov A. V., “On the generalized Chaplygin system”, Zapiski nauchn. seminarov POMI, 374, 2010, 250–267 | MR

[27] Vershilov A. V., Tsiganov A. V., “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion”, J. Phys. A, 42 (2009), 105203, 12 pp. | DOI | MR | Zbl

[28] Yehia H. M., Elmandouh A. A., “New integrable systems with a quartic integral and new generalizations of Kovalevskaya's and Goriatchev's cases”, Regul. Chaotic Dyn., 13:1 (2008), 56–69 | MR