An approximate solution of a 2D rigid body motion problem on a rough surface
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 359-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

We report a novel general method for constructing an approximate solution of the planar motion of solids with an axially symmetric mass distribution and normal stresses over the contact area on a rough horizontal surface. For a disk characterized by Galin distribution of contact stresses we obtain explicit dependence of the angular and sliding velocity of the body as a function of time. The relative errors of the method do not exceed 1,5–2%. The simplicity and high accuracy of the method let us recommend its applications in the practice of engineering calculations.
Keywords: dry friction, Galin disk, flat motion.
@article{ND_2010_6_2_a8,
     author = {O. B. Fedichev and P. O. Fedichev},
     title = {An approximate solution of a {2D} rigid body motion problem on a rough surface},
     journal = {Russian journal of nonlinear dynamics},
     pages = {359--364},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a8/}
}
TY  - JOUR
AU  - O. B. Fedichev
AU  - P. O. Fedichev
TI  - An approximate solution of a 2D rigid body motion problem on a rough surface
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 359
EP  - 364
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a8/
LA  - ru
ID  - ND_2010_6_2_a8
ER  - 
%0 Journal Article
%A O. B. Fedichev
%A P. O. Fedichev
%T An approximate solution of a 2D rigid body motion problem on a rough surface
%J Russian journal of nonlinear dynamics
%D 2010
%P 359-364
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_2_a8/
%G ru
%F ND_2010_6_2_a8
O. B. Fedichev; P. O. Fedichev. An approximate solution of a 2D rigid body motion problem on a rough surface. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 359-364. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a8/

[1] Ishlinskii A. Yu., Sokolov B. N., Chernousko F. L., “O dvizhenii ploskikh tel pri nalichii sukhogo treniya”, Izv. AN SSSR, MTT, 1981, no. 4, 17–28

[2] Zhuravlev V. F., “O modeli sukhogo treniya v zadache kacheniya tverdykh tel”, PMM, 62:5 (1998), 762–767 | MR

[3] Kireenkov A. A., “O dvizhenii odnorodnogo vraschayuschegosya diska po ploskosti v usloviyakh kombinirovannogo treniya”, Izv. RAN, MTT, 2002, no. 1, 60–67 | MR

[4] Zhuravlev V. F., Kireenkov A. A., “O razlozheniyakh Pade v zadache o dvumernom kulonovom trenii”, Izv. RAN, MTT, 2 (2005), 3–14

[5] Ivanov A. P., “O dvizhenii ploskikh tel pri nalichii treniya pokoya”, Izv. RAN, MTT, 2003, no. 4, 89–94

[6] Rozenblat G. M., “Ob integrirovanii uravnenii dvizheniya diska po sherokhovatoi ploskosti”, Izv. RAN, MTT, 2007, no. 4, 65–71

[7] Leine R. I., Glocker C., “A set-valued force law for spatial Coulomb-Contensou friction”, Europ. J. Mech. A. Solids, 22 (2003), 193–216 | DOI | MR | Zbl

[8] Farkas Z., Bartels G., Unger T., Wolf D., “Frictional coupling between sliding and spinning motion”, Phys. Rev. Letters, 90:24 (2003), 248302 | DOI

[9] Fedichev P., Fedichev O., Stopping dynamics of sliding and spinning bodies on a flat surface with dry friction, in press

[10] Wolfram S., The mathematica book, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl