Rubber ball on a plane: singular solutions
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 345-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the rolling motion of a balanced, dynamically asymmetric ball on a plane without sliding and spinning. The problem is natural but was not considered by classicists. Generalizations of the problem are analyzed for the case where gyrostat and force Brun field are added. To investigate the dynamic behavior of the system some peculiar periodic solutions are described and their stability is examined. By integral mapping, bifurcation diagrams and bifurcation complexes are constructed.
Mots-clés : bifurcation complex
Keywords: rubber ball, stability, nonholonomic system.
@article{ND_2010_6_2_a7,
     author = {A. Yu. Moskvin},
     title = {Rubber ball on a plane: singular solutions},
     journal = {Russian journal of nonlinear dynamics},
     pages = {345--358},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a7/}
}
TY  - JOUR
AU  - A. Yu. Moskvin
TI  - Rubber ball on a plane: singular solutions
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 345
EP  - 358
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a7/
LA  - ru
ID  - ND_2010_6_2_a7
ER  - 
%0 Journal Article
%A A. Yu. Moskvin
%T Rubber ball on a plane: singular solutions
%J Russian journal of nonlinear dynamics
%D 2010
%P 345-358
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_2_a7/
%G ru
%F ND_2010_6_2_a7
A. Yu. Moskvin. Rubber ball on a plane: singular solutions. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 345-358. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a7/

[1] Borisov A. V., Mamaev I. S., “Rolling of a rigid body on plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[2] Ehlers K., Koiller J., Montgomery R., and Rios P. M., “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The breadth of symplectic and Poisson geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 75–120 | MR | Zbl

[3] Kilin A. A., “The dynamics of Chapligin ball: The qualitative and computeral analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, Regul. Chaotic Dyn., 2010 (gotovitsya k pechati)

[5] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 1999, 892 pp.

[6] Borisov A. V., Mamaev I. S., “Izomorfizm i gamiltonovo predstavlenie nekotorykh negolonomnykh sistem”, Sibirsk. matem. zhurn., 48:1 (2007), 33–45 | MR | Zbl

[7] Borisov A. V., Mamaev I. S., “Kachenie neodnorodnogo shara po sfere bez skolzheniya i vercheniya”, Nelineinaya dinamika, 2:4 (2006), 445–452 | MR

[8] Veselova L. E., “Novye sluchai integriruemosti uravnenii dvizheniya tverdogo tela pri nalichii negolonomnoi svyazi”, Geometriya, differentsialnye uravneniya i mekhanika, MGU, M., 1986, 64–68

[9] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[10] Markeev A. P., “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, Izv. AN SSSR. MTT, 21:1 (1986), 64–65

[11] Moskvin A. Yu., “Shar Chaplygina s girostatom: osobye resheniya”, Nelineinaya dinamika, 5:3 (2009), 345–356 | Zbl