Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2010_6_2_a4, author = {M. A. Guzev and Yu. G. Izrailsky and K. V. Koshel}, title = {Global chaotization effect in particles chain}, journal = {Russian journal of nonlinear dynamics}, pages = {291--305}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a4/} }
TY - JOUR AU - M. A. Guzev AU - Yu. G. Izrailsky AU - K. V. Koshel TI - Global chaotization effect in particles chain JO - Russian journal of nonlinear dynamics PY - 2010 SP - 291 EP - 305 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a4/ LA - ru ID - ND_2010_6_2_a4 ER -
M. A. Guzev; Yu. G. Izrailsky; K. V. Koshel. Global chaotization effect in particles chain. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 291-305. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a4/
[1] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku: Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 368 pp.
[2] Rom-Kedar V., Leonard A., Wiggins S., “An analytical study of transport, mixing and chaos in an unsteady vortical flow”, J. Fluid Mech., 214 (1990), 347–394 | DOI | MR | Zbl
[3] Treschev D., “Width of stochastic layers in near-integrable two-dimensional symplectic maps”, Phys. D, 116:1-2 (1998), 21–43 | DOI | MR | Zbl
[4] Zaslavskii G. M., Fizika khaosa v gamiltonovykh sistemakh, Inst. kompyutern. issled., M.–Izhevsk, 2004, 288 pp.
[5] Pikovskii A. S., “Generatsiya khaoticheskikh voln v nelineinoi tsepochke”, Pisma v ZhETF, 40:6 (1984), 217–219
[6] Makarov D. V., Uleiskii M. Yu., “Generatsiya ballisticheskogo transporta chastits pri vozdeistvii slabogo peremennogo vozmuscheniya na periodicheskuyu gamiltonovu sistemu”, Pisma v ZhETF, 83:11 (2006), 614–617
[7] Guzev M. A., Izrailskii Yu. G., Shepelov M. A., Permyakov N. A., “Struktura i khaos odnomernoi molekulyarnoi sistemy”, Fizika i khimiya stekla, 34:4 (2008), 518–528
[8] Chirikov B. V., “A universal instability of many-dimensional oscillator systems”, Phys. Rep., 52:5 (1979), 264–379 | DOI | MR
[9] Izrailsky Yu. G., Koshel K. V., and Stepanov D. V., “Determination of the optimal excitation frequency range in background flows”, Chaos, 18:1 (2008), 013107, 9 pp. | DOI | MR
[10] Koshel K. V. and Prants S. V., “Chaotic advection in the ocean”, Physics-Uspekhi, 49:11 (2006), 1151–1178 | DOI
[11] Gudimenko A. I., “Dinamika trekh vikhrei v vozmuschennykh ustoichivykh ravnostoronnei i kollinearnoi konfiguratsiyakh”, Nelineinaya dinamika, 3:4 (2007), 379–391 | Zbl
[12] Shinbrot T., Grebogi C., Yorke J. A., and Ott E., “Using small perturbations to control chaos”, Nature, 363 (1993), 411–417 | DOI
[13] Tang X. Z., Boozer A. H., “Design criteria of a chemical reactor based on a chaotic flow”, Chaos, 9:1 (1999), 183–194 | DOI
[14] Koshel K. V., Sokolovskiy M. A., and Davies P. A., “Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle”, Fluid Dynam. Res., 40 (2008), 695–736 | DOI | MR | Zbl