Parameter estimation in dynamical systems with additive noise
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 267-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper possibilities of parameters estimation are considered in dynamical systems (DS) with additive noise. Simple and effective algorithms, optimal parameter values of numeric simulation and data filtration methods are proposed that enable one to find the controlling parameter value of a noisy DS with a high accuracy. Different DS are studied, and the accuracy of parameter estimation is examined for various dynamical modes and for different noise intensities.
Keywords: dynamical system, parameter estimation
Mots-clés : fluctuations, noise, bifurcations, chaos.
@article{ND_2010_6_2_a2,
     author = {V. S. Malyaev and T. E. Vadivasova},
     title = {Parameter estimation in dynamical systems with additive noise},
     journal = {Russian journal of nonlinear dynamics},
     pages = {267--276},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a2/}
}
TY  - JOUR
AU  - V. S. Malyaev
AU  - T. E. Vadivasova
TI  - Parameter estimation in dynamical systems with additive noise
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 267
EP  - 276
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a2/
LA  - ru
ID  - ND_2010_6_2_a2
ER  - 
%0 Journal Article
%A V. S. Malyaev
%A T. E. Vadivasova
%T Parameter estimation in dynamical systems with additive noise
%J Russian journal of nonlinear dynamics
%D 2010
%P 267-276
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_2_a2/
%G ru
%F ND_2010_6_2_a2
V. S. Malyaev; T. E. Vadivasova. Parameter estimation in dynamical systems with additive noise. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 267-276. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a2/

[1] Dmitriev A. S., Panas A. I., Dinamicheskii khaos: novye nositeli informatsii dlya sistem svyazi, Fizmatlit, M., 2002, 252 pp.

[2] Anishchenko V. S., Pavlov A. N., Janson N. B., “Global reconstruction in the presence of a priori information”, Chaos Solitons Fractals, 9:8 (1998), 1267–1278 | DOI | Zbl

[3] Tikhonov V. I., Kharisov V. N., Statisticheskii analiz i sintez radiotekhnicheskikh ustroistv i sistem, Radio i svyaz, M., 1991, 608 pp.

[4] Pavlov A. N., Yanson N. B., Anischenko V. S., “Rekonstruktsiya dinamicheskikh sistem”, Radiotekhnika i elektronika, 44:9 (1999), 1075–1092

[5] Bezruchko B. P., Smirnov D. A., “Constructing nonautonomous differential equations from experimental time series”, Phys. Rev. E, 63:1 (2001), 016207, 7 pp. | DOI | MR

[6] Dmitriev A. S., Kislov V. Ya., Stokhasticheskie kolebaniya v radiofizike i elektronike, Nauka, M., 1989, 280 pp.

[7] Timmer J., “Parameter estimation in nonlinear stochastic differential equations”, Chaos Solitons Fractals, 11 (2000), 2571–2578 | DOI | Zbl

[8] Khorstkhemke V., Lefevr R., Indutsirovannye shumom perekhody, Mir, M., 1987, 400 pp.

[9] Graham R., “Macroscopic potentials, bifurcations and noise in dissipative systems”, Noise in Nonlinear Dynamical Systams, v. 1, Theory of continuous Fokker–Planck systems, eds. F. Moss, P. V. E. McClintock, Cambridge Univ. Press, Cambrige, 1989 | Zbl

[10] Arnold L., Random Dynamical System, Springer, Berlin, 1998, 586 pp. | MR

[11] Anischenko V. S., Vadivasova T. E., Okrokvertskhov G. A., Strelkova G. I., “Statisticheskie svoistva dinamicheskogo khaosa”, UFN, 175:2 (2005), 163–179

[12] Anischenko V. S., Safonova M. A., “Bifurkatsii attraktorov v prisutstvii fluktuatsii”, ZhTF, 58:4 (1988), 64–651

[13] Jaeger L., Kants H., “Homoclinic tangencies and nonnormal Jacobians-effects of noise in nonhyperbolic chaotic systems”, Phys. D, 105 (1997), 79–96 | DOI | MR | Zbl

[14] Schroer Ch. G., Ott E., Yorke J. A., “Effects of noise on nonhyperbolic chaotic attractors”, Phys. Rev. Lett., 81:7 (1998), 1397–1400 | DOI

[15] Kravtsov Yu. A., Suruvyatkina E. D., “Nonlinear saturation of prebifurcation noise amplification”, Phys. Lett. A, 319:3-4 (2003), 348–351 | DOI | Zbl

[16] Malyaev V. S., Vadivasova T. E., “Vozmozhnost otsenki parametrov zashumlennoi dinamicheskoi sistemy po realizatsiyam kolebanii”, Statisticheskaya fizika i informatsionnye tekhnologii, Materialy Mezhdunar. shkoly-seminara «StatInfo-2009», OOO ITs «Nauka», Saratov, 2009, 95–98

[17] Mannella R., Palleschi V., “Fast and precise algorithm for computer simulation of stochastic differential equations”, Phys. Rev. A, 40 (1989), 3381–3386 | DOI

[18] Kloeden P. E., “The numerical solution of nonlinear stochastic dynamical systems: A brief introduction”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1:2 (1991), 277–286 | DOI | MR | Zbl

[19] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp.

[20] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Binom. Laboratoriya znanii, M., 2003, 632 pp.

[21] Anischenko V. S., Vadivasova T. E., Astakhov V. V., Nelineinaya dinamika khaoticheskikh i stokhasticheskikh sistem, Sarat. gos. un-ta, Saratov, 1999, 368 pp.

[22] Anischenko V. S., Vadivasova T. E., Astakhov V. V., Regulyarnye i khaoticheskie avtokolebaniya: Sinkhronizatsiya i vliyanie fluktuatsii, Intellekt, Dolgoprudnyi, 2009, 312 pp.