On the model of non-holonomic billiard
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 373-385.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a new model of non-holonomic billiard that accounts for the intrinsic rotation of the billiard ball. This model is a limit case of the problem of rolling without slipping of a ball without slipping over a quadric surface. The billiards between two parallel walls and inside a circle are studied in detail. Using the three-dimensional-point-map technique, the non-integrability of the non-holonomic billiard within an ellipse is shown.
Mots-clés : billiard
Keywords: impact, point mapping, nonintegrability, periodic solution, nonholonomic constraint, integral of motion.
@article{ND_2010_6_2_a11,
     author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {On the model of non-holonomic billiard},
     journal = {Russian journal of nonlinear dynamics},
     pages = {373--385},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a11/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - On the model of non-holonomic billiard
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 373
EP  - 385
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a11/
LA  - ru
ID  - ND_2010_6_2_a11
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T On the model of non-holonomic billiard
%J Russian journal of nonlinear dynamics
%D 2010
%P 373-385
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_2_a11/
%G ru
%F ND_2010_6_2_a11
A. V. Borisov; A. A. Kilin; I. S. Mamaev. On the model of non-holonomic billiard. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 373-385. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a11/

[1] Appell P., “Sur le mouvement d'une bille de billard avec frottement de roulement”, J. Math. Pures Appl., Sér. 6, 7 (1911), 85–96 | Zbl

[2] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[3] Coriolis G.-G., Théorie mathématique des effets du jeu billard, Carilian-Goeury, Paris, 1835, 174 pp.; Koriolis G., Matematicheskaya teoriya yavlenii bilyardnoi igry, Gostekhteorizdat, M., 1956, 236 pp.

[4] Cross R., “Grip-slip behavior of a bouncing ball”, Am. J. Phys., 70:11 (2002), 1093–1102 | DOI | MR

[5] Chatterjee A., Rigid Body Collisions: Some General Considerations, New Collision Laws, and Some Experimental Data, Ph.D. Thesis, Jan 1997

[6] Bayes J. H., Scott W., “Billiard-ball collision experiment”, Am. Jour. Physics, 3(31) (1963), 197–200 | DOI

[7] Derby N., Fuller R., “Reality and theory in a collision”, The Physics Teacher, 37:1 (1999), 24–27 | DOI

[8] Glocker Ch., “On frictionless impact models in rigid-body systems: Non-smooth mechanics”, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359:1789 (2001), 2385–2404 | DOI | MR | Zbl

[9] Hemming G. W., Billiards mathematically treated, Macmillan, London, 1904, 61 pp. | Zbl

[10] Horák Z., “Théorie generále du choc dans les systémes matériels”, J. École Polytech., Sér. 2, 28 (1931), 15–64

[11] Horák Z., Pacáková I., “The theory of the spinning impact of imperfectly elastic bodies”, Czechoslovak. J. Phys. B, 11 (1961), 46–65 | DOI | MR

[12] Resal H., “Commentaire à la théorie mathématique du jeu de billard”, J. Math. Pures Appl., Sér. 3, 9 (1883), 65–98; Rezal A., “Kommentarii k matematicheskoi teorii yavlenii bilyardnoi igry”, Nelineinaya dinamika, 6:2 (2010), 415–438

[13] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Progr. Math., 219, Birkhäuser, Boston, 2003, 1070 pp. | MR | Zbl

[14] Tabachnikov S., Geometry and Billiards, Student Mathematical Library, 30, AMS, Providence, RI, 2005, 176 pp. | MR | Zbl

[15] Vorobets Ya. B., Galperin G. A., Stepin A. M., “Periodicheskie bilyardnye traektorii v mnogougolnikakh: mekhanizmy rozhdeniya”, UMN, 47:3 (1992), 9–74 | MR | Zbl

[16] Goldsmit V., Udar: Teoriya i fizicheskie svoistva soudaryaemykh tel, Stroiizdat, M., 1965, 448 pp.

[17] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Poncele, NITs RKhD, IKI, M.–Izhevsk, 2010, 310 pp.

[18] Ivanov A. P., Dinamika sistem s mekhanicheskimi soudareniyami, Mezhdunarodnaya programma obrazovaniya, M., 1997, 336 pp.

[19] Ivanov A. P., “Ob uravneniyakh dvizheniya negolonomnoi sistemy s neuderzhivayuschei svyazyu”, PMM, 49:5 (1985), 717–723 | MR | Zbl

[20] Kozlov V. V., Treschev D. V., Billiardy: Geneticheskoe vvedenie v dinamiku sistem s udarami, MGU, M., 1991, 168 pp.

[21] Markeev A. P., “Dinamika tverdogo tela pri nalichii ego soudarenii s tverdoi poverkhnostyu”, Nelineinaya dinamika, 4:1 (2008), 1–38

[22] Nagaev R. F., Kholodilin N. A., “O teorii soudarenii bilyardnykh sharov”, Izv. RAN Mekh. tv. tela, 27:6 (1992), 48–55 | MR

[23] Huber A., Richtig Billard, BLV, München, 2007, 128 pp.

[24] Wallace R. E., Schroeder M. C., “Analysis of billiard ball collisions in two dimensions”, Am. J. Phys., 56:9 (1988), 815–819 | DOI