Studying the nonautonomous differential equations by methods of qualitative theory of control dynamical systems
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 143-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonautonomous systems of differential equations of second order which represent the family of control dynamical systems with given constraints on the control, we propose a method for constructing the borders of controllability and attainability. For this, we introduce the notions of singular points and singular trajectories, and study the structure of punctured neighborhood of a singular point. Some concrete examples of self interest are considered.
Keywords: control dynamical system, comparison method, nonautonomous systems, singular points, singular trajectories.
@article{ND_2010_6_1_a8,
     author = {N. N. Butenina and V. S. Metrikin},
     title = {Studying the nonautonomous differential equations by methods of qualitative theory of control dynamical systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {143--150},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a8/}
}
TY  - JOUR
AU  - N. N. Butenina
AU  - V. S. Metrikin
TI  - Studying the nonautonomous differential equations by methods of qualitative theory of control dynamical systems
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 143
EP  - 150
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a8/
LA  - ru
ID  - ND_2010_6_1_a8
ER  - 
%0 Journal Article
%A N. N. Butenina
%A V. S. Metrikin
%T Studying the nonautonomous differential equations by methods of qualitative theory of control dynamical systems
%J Russian journal of nonlinear dynamics
%D 2010
%P 143-150
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a8/
%G ru
%F ND_2010_6_1_a8
N. N. Butenina; V. S. Metrikin. Studying the nonautonomous differential equations by methods of qualitative theory of control dynamical systems. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 143-150. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a8/

[1] Baitman M. M., “Ob oblastyakh upravlyaemosti na ploskosti”, Differents. ur-niya, 14:4 (1978), 579–593 | MR | Zbl

[2] Butenina N. N., “The structure of the boundary curve for planar controllability domains”, Methods of qualitative theory of differential equations and related topics, Math. Soc. Transl. Ser. 2, 200, AMS, Providence, RI, 2000, 73–86 | MR | Zbl

[3] Butenina N. N., Sizova N. A., “Osobye intervaly upravlyaemoi dinamicheskoi sistemy vtorogo poryadka”, Matematicheskoe modelirovanie i optimalnoe upravlenie. Vestn. Nizhegorodskogo un-ta, 1997, 108–115

[4] Butenina N. N., Metrikin A. V., “Ob osobennostyakh povedeniya fazovykh traektorii v matematicheskoi modeli prokladki glubokovodnogo truboprovoda $J$-metodom”, Sb. nauchnykh trudov, Nizhegorodskii filial instituta mashinovedeniya RAN, N. Novgorod, 2005, 9–19

[5] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR