Self-sustained oscillations of dynamical and stochastic systems and their mathematical image — an attractor
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 107-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper autonomous and nonautonomous oscillations of dynamical and stochastic systems are analyzed in the framework of common concepts. The definition of an attractor is introduced for a nonautonomous system. The definitions of self-sustained oscillations and a self-sustained oscillatory system is proposed, that generalize A. A. Andronov's concept introduced for autonomous systems with one degree of freedom.
Keywords: self-sustained oscillations, dynamical chaos, attractor
Mots-clés : fluctuations.
@article{ND_2010_6_1_a6,
     author = {V. S. Anishchenko and T. E. Vadivasova and G. I. Strelkova},
     title = {Self-sustained oscillations of dynamical and stochastic systems and their mathematical image {\textemdash} an attractor},
     journal = {Russian journal of nonlinear dynamics},
     pages = {107--126},
     year = {2010},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a6/}
}
TY  - JOUR
AU  - V. S. Anishchenko
AU  - T. E. Vadivasova
AU  - G. I. Strelkova
TI  - Self-sustained oscillations of dynamical and stochastic systems and their mathematical image — an attractor
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 107
EP  - 126
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a6/
LA  - ru
ID  - ND_2010_6_1_a6
ER  - 
%0 Journal Article
%A V. S. Anishchenko
%A T. E. Vadivasova
%A G. I. Strelkova
%T Self-sustained oscillations of dynamical and stochastic systems and their mathematical image — an attractor
%J Russian journal of nonlinear dynamics
%D 2010
%P 107-126
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a6/
%G ru
%F ND_2010_6_1_a6
V. S. Anishchenko; T. E. Vadivasova; G. I. Strelkova. Self-sustained oscillations of dynamical and stochastic systems and their mathematical image — an attractor. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 107-126. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a6/

[1] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981 | MR | Zbl

[2] Afraimovich V. S., Shilnikov L. P., “Strange attractors and quasiattractors”, Nonlinear dynamics and turbulence, eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitman, Boston, 1983, 1–34 | MR

[3] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, Nauka, M., 1990 ; 2-е изд., УРСС, М., 2009 | MR

[4] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Ser. Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, M., 1986 | MR

[5] Arnold L., Random dynamical systems, Springer, Berlin, 2003 | MR

[6] Schmalfuss B., “The random attractor of the stochastic Lorenz system”, ZAMP, 48 (1997), 951–975 | DOI | MR | Zbl

[7] Crauell H., Debussche A., Flandoli F., “Random attractors”, J. Dynam. Differential Equations, 9 (1997), 307–341 | DOI | MR

[8] Stratonovich R. L., Izbrannye voprosy teorii fluktuatsii v radiotekhnike, Sov. radio, M., 1961 | Zbl

[9] Malakhov A. N., Fluktuatsii v avtokolebatelnykh sistemakh, Nauka, M., 1968

[10] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Strelkova G. I., Sinkhronizatsiya regulyarnykh, khaoticheskikh i stokhasticheskikh kolebanii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.-Izhevsk, 2008

[11] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Neiman A. B., Strelkova G. I., Shimanskii-Gaier L., Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh, Inst. kompyuter. issled., M.-Izhevsk, 2003

[12] Neiman A. B., “Synchronizationlike phenomena in coupled stochastic bistable systems”, Phys. Rev. E, 49 (1994), 3484–3488 | DOI

[13] Shulgin B. V., Neiman A. B., Anishchenko V. S., “Mean switching frequency locking in stochastic bistable systems driven by periodic force”, Phys. Rev. Lett., 75 (1995), 4157–4160 | DOI

[14] Pikovsky A., Kurths J., “Coherence resonance in a noisy driven excitable system”, Phys. Rev. Lett., 78 (1997), 775–778 | DOI | MR | Zbl

[15] Han S. K., Yim T. G., Postnov D. E., Sosnovtseva O. V., “Interacting coherence resonance oscillators”, Phys. Rev. Lett., 83:9 (1999), 1771–1774 | DOI

[16] FitzHugh R. A., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI

[17] Scott A. C., “The electrophysics of a nerve fiber”, Rev. Mod. Phys., 47 (1975), 487–533 | DOI

[18] Landa P. S., Nonlinear oscillation and waves in dynamical systems, Kluwer Academic, Dordrecht, 1996 | MR | Zbl