To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 91-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper diffeomorphisms on orientable surfaces are considered, whose non-wandering set consists of a finite number of hyperbolic fixed points and the wandering set contains a finite number of heteroclinic orbits of transversal and non-transversal intersections. We investigate substantial class of diffeomorphisms for which it is found complete topological invariant — a scheme consisting of a set of geometrical objects equipped by numerical parametres (moduli of topological conjugacy).
Keywords: orbits of heteroclinic tangency, one-sided tangency, topological conjugacy, moduli of topological conjugacy.
@article{ND_2010_6_1_a5,
     author = {T. M. Mitryakova and O. V. Pochinka},
     title = {To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy},
     journal = {Russian journal of nonlinear dynamics},
     pages = {91--105},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a5/}
}
TY  - JOUR
AU  - T. M. Mitryakova
AU  - O. V. Pochinka
TI  - To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 91
EP  - 105
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a5/
LA  - ru
ID  - ND_2010_6_1_a5
ER  - 
%0 Journal Article
%A T. M. Mitryakova
%A O. V. Pochinka
%T To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy
%J Russian journal of nonlinear dynamics
%D 2010
%P 91-105
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a5/
%G ru
%F ND_2010_6_1_a5
T. M. Mitryakova; O. V. Pochinka. To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a5/

[1] Belitskii G. R., Normalnye formy, invarianty i lokalnye otobrazheniya, Naukova dumka, Kiev, 1979, 174 pp. | MR

[2] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. Ch. 1”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. tematich. sb. nauch. tr., eds. E. A. Leontovich-Andronova, GGU, Gorkii, 1985, 22–38 | MR

[3] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. Ch. 2”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. tematich. sb. nauch. tr., eds. E. A. Leontovich-Andronova, GGU, Gorkii, 1987, 24–32 | MR

[4] Bezdenezhnykh A. N., Grines V. Z., “Realizatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh”, Differentsialnye i integralnye uravneniya, eds. N. F. Otrokov, GGU, Gorkii, 1985, 33–37 | MR

[5] Bonatti Khr., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa\f Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na $3$-mnogoobraziyakh”, Trudy Instituta Matematiki Steklova, 250, 2005, 5–53 | MR | Zbl

[6] Bonatti Ch., Langevin R., Difféomorphismes de Smale des surfaces, Astérisque, 250, Soc. Math. France, Paris, 1998, 243 pp. | MR | Zbl

[7] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi. Ch. I”, Matem. sb., 88(130):4 (1972), 475–492 ; Гаврилов Н. К., Шильников Л. П., “О трехмерных динамических системах, близких к системе с негрубой гомоклинической кривой. Ч. II”, Матем. сб., 90(132):1 (1973), 139–156 | MR | Zbl | MR | Zbl

[8] Gonchenko S. V., “Moduli sistem s negrubymi gomoklinicheskimi traektoriyami (sluchai diffeomorfizmov i vektornykh polei)”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuz. sb. nauch. tr., eds. L. P. Shilnikov, GGU, Gorkii, 1989, 34–49 | MR

[9] Gonchenko S. V., Shilnikov L. P., “Invarianty $\Omega$-sopryazhennosti diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. matem. zhurn., 1990, no. 2, 153–159 | MR | Zbl

[10] Gonchenko S. V., Shilnikov L. P., “O modulyakh sistem s negruboi gomoklinicheskoi krivoi Puankare”, Izv. RAN. Ser. matem., 56:6 (1992), 1165–1197 | MR | Zbl

[11] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa—Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Matem. zametki, 54:3 (1993), 3–17 | MR | Zbl

[12] Grines V. Z., “O topologicheskoi klassifikatsii strukturno ustoichivykh diffeomorfizmov poverkhnostei s odnomernymi attraktorami i repellerami”, Matem. sb., 188:4 (1997), 57–94 | MR | Zbl

[13] Langevin R., “Quelques nouveaux invariants des difféomorphismes Morse-Smale d'une surface”, Ann. Inst. Fourier (Grenoble), 43:1 (1993), 265–278 | MR | Zbl

[14] De Melo W., “Moduli of stability of two-dimensional diffeomorphisms”, Topology, 19 (1980), 9–21 | DOI | MR | Zbl

[15] de Melo W., van Strien S. J., “Diffeomorphisms on surfaces with a finite number of moduli”, Ergodic Theory Dynam. Systems, 7:3 (1987), 415–462 | MR | Zbl

[16] Mitryakova T. M., Pochinka O. V., “Klassifikatsiya prosteishikh diffeomorfizmov sfery $S^2$ s odnim modulem ustoichivosti”, Sovremennaya matematika i ee prilozheniya, 54, Institut kibernetiki AN Gruzii, 2008, 99–113

[17] Nielsen J., “Die Struktur periodischer Transformationen von Flächen”, Danske Vid. Selsk. Math.-Fys. Medd., 15 (1937), 1–77

[18] Newhouse S. E., Palis J., “Bifurcations of Morse–Smale dynamical systems”, Dynamical systems, Proc. Sympos. (Univ. of Bahia, Salvador, Brasil, 1971), eds. M. Peixoto, Acad. Press, New York, 1973, 303–366 | MR

[19] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR

[20] Palis J., “A differentiable invariant of topological conjugacies and moduli of stability”, Astérisque, 51, 1978, 335–346 | MR | Zbl

[21] Peixoto M., “On the classification of flows on two-manifolds // Dynamical systems”, Proc. Sympos. (Univ. of Bahia, Salvador, Brasil, 1971), eds. M. Peixoto, Acad. Press, New York, 1973, 389–419 | MR

[22] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, Inst. kompyuter. issled., M.-Izhevsk, 2004, 416 pp. | Zbl

[23] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 ; Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | DOI | MR | Zbl | MR