Weil foliations
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 219-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

A foliation that admits a Weil geometry as its transverse structure is called by us a Weil foliation. We proved that there exists an attractor for any Weil foliation that is not Riemannian foliation. If such foliation is proper, there exists an attractor coincided with a closed leaf. The above assertions are proved without assumptions of compactness of foliated manifolds and completeness of the foliations. We proved also that an arbitrary complete Weil foliation either is a Riemannian foliation, with the closure of each leaf forms a minimal set, or it is a trasversally similar foliation and there exists a global attractor. Any proper complete Weil foliation either is a Riemannian foliation, with all their leaves are closed and the leaf space is a smooth orbifold, or it is a trasversally similar foliation, and it has a unique closed leaf which is a global attractor of this foliation.
Mots-clés : Weil foliation
Keywords: minimal set, attractor, holonomy group.
@article{ND_2010_6_1_a15,
     author = {N. I. Zhukova},
     title = {Weil foliations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {219--231},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a15/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Weil foliations
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 219
EP  - 231
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a15/
LA  - ru
ID  - ND_2010_6_1_a15
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Weil foliations
%J Russian journal of nonlinear dynamics
%D 2010
%P 219-231
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a15/
%G ru
%F ND_2010_6_1_a15
N. I. Zhukova. Weil foliations. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 219-231. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a15/

[1] Weyl H., Space, Time, Matter, 4 ed., Dover Publications, New York, 1952, 330 pp. | Zbl

[2] Wojtkowski M. P., “Weyl Manifolds and Gaussian Thermostats”, Proc. of the Internat. Congr. of Mathematicians (Beijing, 2002), v. 3, Higher Ed. Press, Beijing, 2002, 511–523 | MR | Zbl

[3] Blumenthal R., “Cartan Submersions and Cartan foliations”, Illinois Math. J., 31:2 (1987), 327–343 | MR | Zbl

[4] Zhukova N. I., “Minimalnye mnozhestva kartanovykh sloenii”, Tr. in-ta im. V. A. Steklova, 256, 2007, 115–147 | MR | Zbl

[5] Zhukova N. I., “Polnye sloeniya s transversalnymi zhestkimi geometriyami i ikh bazovye avtomorfizmy”, Vestn. RUDN. Ser. Matem. Informat. Fizika, 2009, no. 2, 14–35

[6] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, Inst. kompyuter. issled., M.-Izhevsk, 2004, 416 pp. | Zbl

[7] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981, 344 pp. | MR

[8] Folland G. B., “Weyl manifolds”, J. Differential Geom., 4 (1970), 145–153 | MR | Zbl

[9] Vaisman I., “Conformal foliations”, Kodai Math. J., 2:1 (1979), 26–37 | DOI | MR | Zbl

[10] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986, 224 pp. | MR

[11] Sharpe R. W., Differential Geometry: Cartan's Generalization of Klein's Erlangen program, Grad. Texts in Math., 166, Springer, New York, 1997, 421 pp. | MR | Zbl

[12] Tamura I., Topologiya sloenii, Mir, M., 1979, 317 pp. | MR | Zbl

[13] Molino P., Riemannian Foliations, Progr. Math., 73, Birkhäuser, Boston, 1988, 339 pp. | MR | Zbl

[14] Hertrich-Jeromin U., Introduction to Möbius Differential Geometry, London Math. Soc. Lecture Note Ser., 300, Cambridge Univ. Press, Cambridge, 2003, 426 pp. | MR | Zbl

[15] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979, 255 pp. | MR | Zbl

[16] Žukova N. I., “On the stability of leaves of Riemannian foliations”, Ann. Global Anal. Geom., 5:3 (1987), 261–271 | DOI | MR