Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2010_6_1_a13, author = {E. A. Sataev}, title = {Stochastic properties of the singular hyperbolic attractors}, journal = {Russian journal of nonlinear dynamics}, pages = {187--206}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a13/} }
E. A. Sataev. Stochastic properties of the singular hyperbolic attractors. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 187-206. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a13/
[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250 | MR
[2] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. AN SSSR, 14:5 (1937), 251–257
[3] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Dokl. AN SSSR, 103:4 (1955), 557–560 | MR
[4] Andronov A. A., Leontovich E. A., Gordon I. E., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl
[5] Andronov A. A., Leontovich E. A., Gordon I. E., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1966, 488 pp. | MR | Zbl
[6] Peixoto M., “Structural stability on two-dimensional manifolds”, Topology, 1 (1962), 101–120 ; Peixoto M., “Structural stability on two-dimensional manifolds: A futher remark”, Topology, 2 (1963), 179–180 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Leontovich E. A., “O rozhdenii predelnogo tsikla iz petli separatrisy”, Dokl. AN SSSR, 78:4 (1951), 444–448
[8] Shilnikov L. P., “O nekotorykh sluchayakh rozhdeniya periodicheskikh dvizhenii iz osobykh traektorii”, Matem. sb., 61:4 (1963), 443–466 | MR | Zbl
[9] Shilnikov L. P., “Sluchai suschestvovaniya beskonechnogo mnozhestva periodicheskikh dvizhenii”, Dokl. AN SSSR, 1965, no. 6, 163–166
[10] Shilnikov L. P., “O rozhdenii periodicheskogo dvizheniya iz traektorii, dvoyakoasimptoticheskoi k sostoyaniyu ravnovesiya tipa sedlo”, Matem. sb., 77:3 (1968), 461–472 | MR | Zbl
[11] Shilnikov L. P., “K voprosu o strukture rasshirennoi okrestnosti grubogo sostoyaniya ravnovesiya tipa sedlo-fokus”, Matem. sb., 81:1 (1970), 92–103 | MR | Zbl
[12] Robinson C., “Homoclinic bifurcation to a transitive attractor of Lorenz type”, Nonlinearity, 2:4 (1989), 495–518 | DOI | MR | Zbl
[13] Rychlik M., “Lorenz attractors through Šil'nikov-type bifurcation 1”, Ergodic Theory Dynam. Systems, 10:4 (1990), 793–821 | DOI | MR | Zbl
[14] Shilnikov L. P., “Teoriya bifurkatsii i kvazigiperbolicheskie attraktory”, UMN, 36:4 (1981), 191–241
[15] Shilnikov L. P., “Teoriya bifurkatsii i model Lorentsa”: Marsden Dzh., Mak Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 317–335 | MR
[16] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Nauka, M., 1967, 210 pp. | Zbl
[17] Anosov D. V., Sinai Ya. G., “Nekotorye gladkie ergodicheskie sistemy”, UMN, 22:5 (1967), 107–172 | MR | Zbl
[18] Lorenz E. N., “Deterministic nonperiodic flow”, J. Atmosph. Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[19] Saltzman B., “Finite amplitude free convectiions as an initial value problem 1”, J. Atmosph. Sci., 19:2 (1962), 329–341 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[20] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O vozniknovenii i strukture attraktora Lorentsa”, Dokl. AN SSSR, 234:2 (1977), 336–339 | MR
[21] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. Mosk. matem. ob-va, 44, 1982, 150–212 | MR
[22] Guckenheimer J., “A strange, strange attractor”, The Hopf bifurcation and its application, eds. Marsden J. E., McCraken M., Springer, New York, 1976, 408 pp. | MR | Zbl
[23] Guckenheimer J., Williams R. F., “Structural stability of Lorenz attractors”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59–72 | DOI | MR | Zbl
[24] Yorke J. A., Yorke E. D., “Metastable chaos: The transition to sustained chaotic oscillations in a model of Lorenz”, J. Stat. Phys., 21 (1979), 263–277 | DOI | MR
[25] Kaplan J. L., Yorke J. A., “Preturbulence: A regime observed in a fluid flow model of Lorenz”, Comm. Math. Phys., 67 (1979), 93–108 | DOI | MR | Zbl
[26] Sparrow C., The Lorenz equations: Bifurcations, chaos, and strange attractors, Springer, New York, 1982, 270 pp. | MR | Zbl
[27] Bunimovich L. A., Sinai Ya. G., “Stokhastichnost attraktora v modeli Lorentsa”, Nelineinye volny, eds. A. V. Gaponova-Grekhova, Nauka, M., 1979, 212–226
[28] Tucker W., “A rigorous ODE Solver and Smale's 14th Problem”, Found. Comp. Math., 2:1 (2002), 53–117 | MR | Zbl
[29] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer, Berlin, 1977, 149 pp. | MR | Zbl
[30] Turaev D. V., Shilnikov L. P., “Psevdogiperbolichnost i problema periodicheskikh vozmuschenii attraktorov tipa attraktora Lorentsa”, Dokl. RAN, 418:1 (2008), 23–27 | MR | Zbl
[31] Sinai Ya. G., “Gibbsovskie mery v ergodicheskoi teorii”, UMN, 27:4 (1972), 21–64 | MR | Zbl
[32] Kifer Yu. I., “O malykh sluchainykh vozmuscheniyakh nekotorykh gladkikh dinamicheskikh sistem”, Izv. AN SSSR. Ser. Matem., 38:5 (1974), 1091–1115 | MR
[33] Bowen R., “Symbolic dynamics for hyperbolic flows”, Amer. J. Math., 95 (1973), 429–459 | DOI | MR
[34] Turaev D. V., Shilnikov L. P., “Primer dikogo strannogo attraktora”, Matem. sb., 189:2 (1998), 137–160 | MR | Zbl
[35] Shilnikov L. P., “Bifurcations and strange attractors”, Proc. of the Internat. Congr. of Mathematicians (Beijing, 2002), v. 3, Higher Ed. Press, Beijing, 2002, 349–372 | MR | Zbl
[36] Morales C. A., Pacifico M. J., Pujals E. R., “On $C^1$ robust singular transitive sets for three-dimensional flows”, C. R. Acad. Sci. Paris, Sér. 1 Math., 326:1 (1998), 81–86 | MR | Zbl
[37] Morales C. A., Pacifico M. J., Pujals E. R., “Singular-hyperbolic systems”, Proc. Amer. Math. Soc., 127:11 (1999), 3393–3401 | DOI | MR | Zbl
[38] Morales C. A., Pacifico M. J., Pujals E. R., “Robust transitive singular sets for $3$-flows are partially hyperbolic attractors or repellers”, Ann. of Math.(2), 160:2 (2004), 375–432 | DOI | MR | Zbl
[39] Sataev E. A., “Nekotorye svoistva singulyarno giperbolicheskikh potokov”, Matem. sb., 200:1 (2009), 37–80 | MR | Zbl
[40] Sataev E. A., “Invariantnye mery dlya singulyarno giperbolicheskikh potokov”, Matem. sb., 201:3 (2010), 107–160 | MR | Zbl
[41] Sataev E. A., Svoistvo peremeshivaniya dlya singulyarno giperbolicheskikh potokov, gotovitsya k pechati
[42] Pesin Ya. B., Lectures on partial hyperbolicity and stable ergodicity, EMS, Zürich, 2004, 122 pp. ; Pesin Ya. B., Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006, 144 pp. | MR | Zbl
[43] Pesin Ya. B., “Dynamical systems with generalised hyperbolic attractors: hyperbolic, ergodic and topological properties”, Ergodic Theory Dynam. Systems, 12:1 (1992), 123–151 | DOI | MR | Zbl
[44] Sataev E. A., “Gibbsovskie mery dlya odnomernykh attraktorov giperbolicheskikh otobrazhenii s osobennostyami”, Izv. RAN. Ser. matem., 56:6 (1992), 1328–1344 | MR | Zbl
[45] Araujo V., Pacifico M. J., Pugals E. R., Viana M., “Singular-hyperbolic attractors are chaotic”, Trans. Amer. Math. Soc., 361:5 (2009), 2431–2485 | DOI | MR | Zbl
[46] Luzzatto S., Melbourn I., Paccaut F., “The Lorenz attractor is mixing”, Comm. Math. Phys., 260:2 (2005), 393–401 | DOI | MR | Zbl
[47] Holland M., Melbourn I., “Central limit theorems and invariance principles for Lorenz attractors”, J. Lond. Math. Soc.(2), 76:2 (2007), 345–364 | DOI | MR | Zbl
[48] Sataev E. A., “Invariantnye mery dlya giperbolicheskikh otobrazhenii s osobennostyami”, UMN, 47:1 (1992), 147–202 | MR | Zbl
[49] Sataev E. A., “Otsutstvie ustoichivykh reshenii u neavtonomnykh vozmuschenii sistem tipa sistem Lorentsa”, Matem. sb., 196:4 (2005), 99–134 | MR | Zbl
[50] Shilnikov A. L., Shilnkov L. P., Turaev D. V., “Normal forms and Lorenz attractors”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3:5 (1993), 1123–1139 | DOI | MR