Stochastic properties of the singular hyperbolic attractors
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 187-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1998 in paper of D. V. Turaev and L. P. Shilnikov there was introduced the definition of the pseudohyperbolic flow. The pseudohyperbolic flow is the flow such that in every point of the phase space there exists decomposition of the tangent bandle to sum of two spaces such that in one of these spaces there is expanding of volume. Independently in paper of C. Morales, M. J. Pacifico and E. Pujals was introduced the definition of the singular hyperbolic flow. Singular hyperbolic attractors satisfy more strong conditions then pseudohyperbolic ones. This paper is devoted to the theory of Sinai–Bowen–Ruelle measures for singular hyperbolic attractors. There are established such properties as ergodicity, mixing, continuous dependence of the invariant measures on flow.
Keywords: pseudohyperbolicity, singular hyperbolic system, invariant measure, ergodicity, mixing.
@article{ND_2010_6_1_a13,
     author = {E. A. Sataev},
     title = {Stochastic properties of the singular hyperbolic attractors},
     journal = {Russian journal of nonlinear dynamics},
     pages = {187--206},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a13/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Stochastic properties of the singular hyperbolic attractors
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 187
EP  - 206
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a13/
LA  - ru
ID  - ND_2010_6_1_a13
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Stochastic properties of the singular hyperbolic attractors
%J Russian journal of nonlinear dynamics
%D 2010
%P 187-206
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a13/
%G ru
%F ND_2010_6_1_a13
E. A. Sataev. Stochastic properties of the singular hyperbolic attractors. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 187-206. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a13/

[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250 | MR

[2] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. AN SSSR, 14:5 (1937), 251–257

[3] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Dokl. AN SSSR, 103:4 (1955), 557–560 | MR

[4] Andronov A. A., Leontovich E. A., Gordon I. E., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl

[5] Andronov A. A., Leontovich E. A., Gordon I. E., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1966, 488 pp. | MR | Zbl

[6] Peixoto M., “Structural stability on two-dimensional manifolds”, Topology, 1 (1962), 101–120 ; Peixoto M., “Structural stability on two-dimensional manifolds: A futher remark”, Topology, 2 (1963), 179–180 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Leontovich E. A., “O rozhdenii predelnogo tsikla iz petli separatrisy”, Dokl. AN SSSR, 78:4 (1951), 444–448

[8] Shilnikov L. P., “O nekotorykh sluchayakh rozhdeniya periodicheskikh dvizhenii iz osobykh traektorii”, Matem. sb., 61:4 (1963), 443–466 | MR | Zbl

[9] Shilnikov L. P., “Sluchai suschestvovaniya beskonechnogo mnozhestva periodicheskikh dvizhenii”, Dokl. AN SSSR, 1965, no. 6, 163–166

[10] Shilnikov L. P., “O rozhdenii periodicheskogo dvizheniya iz traektorii, dvoyakoasimptoticheskoi k sostoyaniyu ravnovesiya tipa sedlo”, Matem. sb., 77:3 (1968), 461–472 | MR | Zbl

[11] Shilnikov L. P., “K voprosu o strukture rasshirennoi okrestnosti grubogo sostoyaniya ravnovesiya tipa sedlo-fokus”, Matem. sb., 81:1 (1970), 92–103 | MR | Zbl

[12] Robinson C., “Homoclinic bifurcation to a transitive attractor of Lorenz type”, Nonlinearity, 2:4 (1989), 495–518 | DOI | MR | Zbl

[13] Rychlik M., “Lorenz attractors through Šil'nikov-type bifurcation 1”, Ergodic Theory Dynam. Systems, 10:4 (1990), 793–821 | DOI | MR | Zbl

[14] Shilnikov L. P., “Teoriya bifurkatsii i kvazigiperbolicheskie attraktory”, UMN, 36:4 (1981), 191–241

[15] Shilnikov L. P., “Teoriya bifurkatsii i model Lorentsa”: Marsden Dzh., Mak Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 317–335 | MR

[16] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Nauka, M., 1967, 210 pp. | Zbl

[17] Anosov D. V., Sinai Ya. G., “Nekotorye gladkie ergodicheskie sistemy”, UMN, 22:5 (1967), 107–172 | MR | Zbl

[18] Lorenz E. N., “Deterministic nonperiodic flow”, J. Atmosph. Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[19] Saltzman B., “Finite amplitude free convectiions as an initial value problem 1”, J. Atmosph. Sci., 19:2 (1962), 329–341 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[20] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O vozniknovenii i strukture attraktora Lorentsa”, Dokl. AN SSSR, 234:2 (1977), 336–339 | MR

[21] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. Mosk. matem. ob-va, 44, 1982, 150–212 | MR

[22] Guckenheimer J., “A strange, strange attractor”, The Hopf bifurcation and its application, eds. Marsden J. E., McCraken M., Springer, New York, 1976, 408 pp. | MR | Zbl

[23] Guckenheimer J., Williams R. F., “Structural stability of Lorenz attractors”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59–72 | DOI | MR | Zbl

[24] Yorke J. A., Yorke E. D., “Metastable chaos: The transition to sustained chaotic oscillations in a model of Lorenz”, J. Stat. Phys., 21 (1979), 263–277 | DOI | MR

[25] Kaplan J. L., Yorke J. A., “Preturbulence: A regime observed in a fluid flow model of Lorenz”, Comm. Math. Phys., 67 (1979), 93–108 | DOI | MR | Zbl

[26] Sparrow C., The Lorenz equations: Bifurcations, chaos, and strange attractors, Springer, New York, 1982, 270 pp. | MR | Zbl

[27] Bunimovich L. A., Sinai Ya. G., “Stokhastichnost attraktora v modeli Lorentsa”, Nelineinye volny, eds. A. V. Gaponova-Grekhova, Nauka, M., 1979, 212–226

[28] Tucker W., “A rigorous ODE Solver and Smale's 14th Problem”, Found. Comp. Math., 2:1 (2002), 53–117 | MR | Zbl

[29] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer, Berlin, 1977, 149 pp. | MR | Zbl

[30] Turaev D. V., Shilnikov L. P., “Psevdogiperbolichnost i problema periodicheskikh vozmuschenii attraktorov tipa attraktora Lorentsa”, Dokl. RAN, 418:1 (2008), 23–27 | MR | Zbl

[31] Sinai Ya. G., “Gibbsovskie mery v ergodicheskoi teorii”, UMN, 27:4 (1972), 21–64 | MR | Zbl

[32] Kifer Yu. I., “O malykh sluchainykh vozmuscheniyakh nekotorykh gladkikh dinamicheskikh sistem”, Izv. AN SSSR. Ser. Matem., 38:5 (1974), 1091–1115 | MR

[33] Bowen R., “Symbolic dynamics for hyperbolic flows”, Amer. J. Math., 95 (1973), 429–459 | DOI | MR

[34] Turaev D. V., Shilnikov L. P., “Primer dikogo strannogo attraktora”, Matem. sb., 189:2 (1998), 137–160 | MR | Zbl

[35] Shilnikov L. P., “Bifurcations and strange attractors”, Proc. of the Internat. Congr. of Mathematicians (Beijing, 2002), v. 3, Higher Ed. Press, Beijing, 2002, 349–372 | MR | Zbl

[36] Morales C. A., Pacifico M. J., Pujals E. R., “On $C^1$ robust singular transitive sets for three-dimensional flows”, C. R. Acad. Sci. Paris, Sér. 1 Math., 326:1 (1998), 81–86 | MR | Zbl

[37] Morales C. A., Pacifico M. J., Pujals E. R., “Singular-hyperbolic systems”, Proc. Amer. Math. Soc., 127:11 (1999), 3393–3401 | DOI | MR | Zbl

[38] Morales C. A., Pacifico M. J., Pujals E. R., “Robust transitive singular sets for $3$-flows are partially hyperbolic attractors or repellers”, Ann. of Math.(2), 160:2 (2004), 375–432 | DOI | MR | Zbl

[39] Sataev E. A., “Nekotorye svoistva singulyarno giperbolicheskikh potokov”, Matem. sb., 200:1 (2009), 37–80 | MR | Zbl

[40] Sataev E. A., “Invariantnye mery dlya singulyarno giperbolicheskikh potokov”, Matem. sb., 201:3 (2010), 107–160 | MR | Zbl

[41] Sataev E. A., Svoistvo peremeshivaniya dlya singulyarno giperbolicheskikh potokov, gotovitsya k pechati

[42] Pesin Ya. B., Lectures on partial hyperbolicity and stable ergodicity, EMS, Zürich, 2004, 122 pp. ; Pesin Ya. B., Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006, 144 pp. | MR | Zbl

[43] Pesin Ya. B., “Dynamical systems with generalised hyperbolic attractors: hyperbolic, ergodic and topological properties”, Ergodic Theory Dynam. Systems, 12:1 (1992), 123–151 | DOI | MR | Zbl

[44] Sataev E. A., “Gibbsovskie mery dlya odnomernykh attraktorov giperbolicheskikh otobrazhenii s osobennostyami”, Izv. RAN. Ser. matem., 56:6 (1992), 1328–1344 | MR | Zbl

[45] Araujo V., Pacifico M. J., Pugals E. R., Viana M., “Singular-hyperbolic attractors are chaotic”, Trans. Amer. Math. Soc., 361:5 (2009), 2431–2485 | DOI | MR | Zbl

[46] Luzzatto S., Melbourn I., Paccaut F., “The Lorenz attractor is mixing”, Comm. Math. Phys., 260:2 (2005), 393–401 | DOI | MR | Zbl

[47] Holland M., Melbourn I., “Central limit theorems and invariance principles for Lorenz attractors”, J. Lond. Math. Soc.(2), 76:2 (2007), 345–364 | DOI | MR | Zbl

[48] Sataev E. A., “Invariantnye mery dlya giperbolicheskikh otobrazhenii s osobennostyami”, UMN, 47:1 (1992), 147–202 | MR | Zbl

[49] Sataev E. A., “Otsutstvie ustoichivykh reshenii u neavtonomnykh vozmuschenii sistem tipa sistem Lorentsa”, Matem. sb., 196:4 (2005), 99–134 | MR | Zbl

[50] Shilnikov A. L., Shilnkov L. P., Turaev D. V., “Normal forms and Lorenz attractors”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3:5 (1993), 1123–1139 | DOI | MR