Qualitative methods for case study of the Hindmarch--Rose model
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 23-52

Voir la notice de l'article provenant de la source Math-Net.Ru

We demonstrate that bifurcations of periodic orbits underlie the dynamics of the Hindmarsh–Rose model and other square-wave bursting models of neurons of the Hodgkin–Huxley type. Such global bifurcations explain in-depth the transitions between the tonic spiking and bursting oscillations in a model. We show that a modified Hindmarsh–Rose model can exhibit the blue sky bifurcation, and a bistability of the coexisting tonic spiking and bursting activities.
Keywords: Hindmarsh–Rose model, dynamics, bistability, tonic spiking, bursting.
Mots-clés : neuron, bifurcations, blue sky catastrophe
@article{ND_2010_6_1_a1,
     author = {M. Kolomiets and A. Shilnikov},
     title = {Qualitative methods for case study of the {Hindmarch--Rose} model},
     journal = {Russian journal of nonlinear dynamics},
     pages = {23--52},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a1/}
}
TY  - JOUR
AU  - M. Kolomiets
AU  - A. Shilnikov
TI  - Qualitative methods for case study of the Hindmarch--Rose model
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 23
EP  - 52
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a1/
LA  - ru
ID  - ND_2010_6_1_a1
ER  - 
%0 Journal Article
%A M. Kolomiets
%A A. Shilnikov
%T Qualitative methods for case study of the Hindmarch--Rose model
%J Russian journal of nonlinear dynamics
%D 2010
%P 23-52
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a1/
%G ru
%F ND_2010_6_1_a1
M. Kolomiets; A. Shilnikov. Qualitative methods for case study of the Hindmarch--Rose model. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 23-52. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a1/