On stability orbital stability of pendulum like motions of a rigid body in the Bobylev--Steklov case
Russian journal of nonlinear dynamics, Tome 5 (2009) no. 4, pp. 535-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with the problem of orbital stability of pendulum like periodic motions of a heavy rigid body with a fixed point. We suppose that the geometry of the mass of the body corresponds to the Bobylev–Steklov case. Unperturbed motion represents oscillations or rotations of the body around a principal axis, occupying a fixed horizontal position. The problem of the orbital stability is considered on the base of a nonlinear analysis. In the case of oscillations with small amplitudes as well as in the case of rotations with high angular velocities we studied the problem analytically. In general case we reduce the problem to the stability study of fixed point of the symplectic map generated by equations of perturbed motion. We calculate coefficients of the symplectic map numerically. By analyzing of the coefficients mentioned we establish orbital stability or instability of the unperturbed motion. The results of the study are represented in the form of stability diagram.
Keywords: Hamiltonian system, periodic orbits, normal form, resonance, KAM theory.
Mots-clés : action-angel variables
@article{ND_2009_5_4_a5,
     author = {B. S. Bardin},
     title = {On stability orbital stability of pendulum like motions of a rigid body in the {Bobylev--Steklov} case},
     journal = {Russian journal of nonlinear dynamics},
     pages = {535--550},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2009_5_4_a5/}
}
TY  - JOUR
AU  - B. S. Bardin
TI  - On stability orbital stability of pendulum like motions of a rigid body in the Bobylev--Steklov case
JO  - Russian journal of nonlinear dynamics
PY  - 2009
SP  - 535
EP  - 550
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2009_5_4_a5/
LA  - ru
ID  - ND_2009_5_4_a5
ER  - 
%0 Journal Article
%A B. S. Bardin
%T On stability orbital stability of pendulum like motions of a rigid body in the Bobylev--Steklov case
%J Russian journal of nonlinear dynamics
%D 2009
%P 535-550
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2009_5_4_a5/
%G ru
%F ND_2009_5_4_a5
B. S. Bardin. On stability orbital stability of pendulum like motions of a rigid body in the Bobylev--Steklov case. Russian journal of nonlinear dynamics, Tome 5 (2009) no. 4, pp. 535-550. http://geodesic.mathdoc.fr/item/ND_2009_5_4_a5/