Lagrange's identity and its generalizations
Russian journal of nonlinear dynamics, Tome 4 (2008) no. 2, pp. 157-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

The famous Lagrange identity expresses the second derivative of the moment of inertia of a system of material points through the kinetic energy and homogeneous potential energy. The paper presents various extensions of this brilliant result to the case 1) of constrained mechanical systems, 2) when the potential energy is quasi-homogeneous in coordinates and 3) of continuum of interacting particles governed by the well-known Vlasov kinetic equation.
Keywords: Lagrange's identity, quasi-homogeneous function
Mots-clés : dilations, Vlasov's equation.
@article{ND_2008_4_2_a3,
     author = {V. V. Kozlov},
     title = {Lagrange's identity and its generalizations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {157--168},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2008_4_2_a3/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Lagrange's identity and its generalizations
JO  - Russian journal of nonlinear dynamics
PY  - 2008
SP  - 157
EP  - 168
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2008_4_2_a3/
LA  - ru
ID  - ND_2008_4_2_a3
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Lagrange's identity and its generalizations
%J Russian journal of nonlinear dynamics
%D 2008
%P 157-168
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2008_4_2_a3/
%G ru
%F ND_2008_4_2_a3
V. V. Kozlov. Lagrange's identity and its generalizations. Russian journal of nonlinear dynamics, Tome 4 (2008) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/ND_2008_4_2_a3/